1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* Copyright (c) 1999-2001 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char solp_helmholtz_minus_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $" ;
/*
* $Id: solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $
* $Log: solp_helmholtz_minus.C,v $
* Revision 1.9 2014/10/13 08:53:31 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.8 2014/10/06 15:16:10 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.7 2008/07/10 11:20:33 p_grandclement
* mistake fixed in solh_helmholtz_minus
*
* Revision 1.6 2008/07/09 06:51:58 p_grandclement
* some corrections to helmholtz minus in the nucleus
*
* Revision 1.5 2008/07/08 11:45:28 p_grandclement
* Add helmholtz_minus in the nucleus
*
* Revision 1.4 2008/02/18 13:53:45 j_novak
* Removal of special indentation instructions.
*
* Revision 1.3 2004/08/24 09:14:44 p_grandclement
* Addition of some new operators, like Poisson in 2d... It now requieres the
* GSL library to work.
*
* Also, the way a variable change is stored by a Param_elliptic is changed and
* no longer uses Change_var but rather 2 Scalars. The codes using that feature
* will requiere some modification. (It should concern only the ones about monopoles)
*
* Revision 1.2 2004/01/15 09:15:37 p_grandclement
* Modification and addition of the Helmholtz operators
*
* Revision 1.1 2003/12/11 14:48:49 p_grandclement
* Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
*
*
* $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $
*
*/
//fichiers includes
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include "matrice.h"
#include "type_parite.h"
#include "proto.h"
//------------------------------------
// Routine pour les cas non prevus --
//------------------------------------
namespace Lorene {
Tbl _solp_helmholtz_minus_pas_prevu (const Matrice &, const Matrice &,
const Tbl &, double, double, int) {
cout << " Solution homogene pas prevue ..... : "<< endl ;
abort() ;
exit(-1) ;
Tbl res(1) ;
return res;
}
//-------------------
//-- R_CHEBU ------
//-------------------
Tbl _solp_helmholtz_minus_r_chebu (const Matrice &lap, const Matrice &nondege,
const Tbl &source, double, double, int) {
int n = lap.get_dim(0)+2 ;
int dege = n-nondege.get_dim(0) ;
assert (dege==3) ;
Tbl source_cl (cl_helmholtz_minus(source, R_CHEBU)) ;
Tbl so(n-dege) ;
so.set_etat_qcq() ;
for (int i=0 ; i<n-dege ; i++)
so.set(i) = source_cl(i);
Tbl sol (nondege.inverse(so)) ;
Tbl res(n) ;
res.annule_hard() ;
for (int i=1 ; i<n-2 ; i++) {
res.set(i) += sol(i-1)*(2*i+3) ;
res.set(i+1) += -sol(i-1)*(4*i+4) ;
res.set(i+2) += sol(i-1)*(2*i+1) ;
}
return res ;
}
//-------------------
//-- R_CHEB -----
//-------------------
Tbl _solp_helmholtz_minus_r_cheb (const Matrice &lap, const Matrice &nondege,
const Tbl &source, double alpha, double beta, int) {
int n = lap.get_dim(0) ;
int dege = n-nondege.get_dim(0) ;
assert (dege ==2) ;
Tbl source_aux(source*alpha*alpha) ;
Tbl xso(source_aux) ;
Tbl xxso(source_aux) ;
multx_1d(n, &xso.t, R_CHEB) ;
multx_1d(n, &xxso.t, R_CHEB) ;
multx_1d(n, &xxso.t, R_CHEB) ;
source_aux = beta*beta/alpha/alpha*source_aux+2*beta/alpha*xso+xxso ;
source_aux = cl_helmholtz_minus (source_aux, R_CHEB) ;
Tbl so(n-dege) ;
so.set_etat_qcq() ;
for (int i=0 ; i<n-dege ; i++)
so.set(i) = source_aux(i) ;
Tbl auxi(nondege.inverse(so)) ;
Tbl res(n) ;
res.set_etat_qcq() ;
for (int i=dege ; i<n ; i++)
res.set(i) = auxi(i-dege) ;
for (int i=0 ; i<dege ; i++)
res.set(i) = 0 ;
return res ;
}
//-------------------
//-- R_CHEBP -----
//-------------------
Tbl _solp_helmholtz_minus_r_chebp (const Matrice &, const Matrice &nondege,
const Tbl &source, double alpha, double, int lq) {
int dege = (lq==0) ? 1 : 2 ;
int n = nondege.get_dim(0) + dege ;
Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBP)) ;
Tbl so(n-dege) ;
so.set_etat_qcq() ;
for (int i=0 ; i<n-dege ; i++)
so.set(i) = source_cl(i);
Tbl sol (nondege.inverse(so)) ;
Tbl res(n) ;
res.annule_hard() ;
if (dege==2) {
for (int i=1 ; i<n-1 ; i++) {
res.set(i) += sol(i-1) ;
res.set(i+1) += sol(i-1) ;
}
}
else {
for (int i=1 ; i<n ; i++)
res.set(i) = sol(i-1) ;
}
return res ;
}
//-------------------
//-- R_CHEBI -----
//-------------------
Tbl _solp_helmholtz_minus_r_chebi (const Matrice &, const Matrice &nondege,
const Tbl &source, double alpha, double, int lq) {
int dege = (lq==1) ? 1 : 2 ;
int n = nondege.get_dim(0) + dege ;
Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBI)) ;
Tbl so(n-dege) ;
so.set_etat_qcq() ;
for (int i=0 ; i<n-dege ; i++)
so.set(i) = source_cl(i);
Tbl sol (nondege.inverse(so)) ;
Tbl res(n) ;
res.annule_hard() ;
if (dege==2) {
for (int i=1 ; i<n-1 ; i++) {
res.set(i) += (2*i+3)*sol(i-1) ;
res.set(i+1) += (2*i+1)*sol(i-1) ;
}
}
else {
for (int i=1 ; i<n ; i++)
res.set(i) = sol(i-1) ;
}
return res ;
}
//-------------------
//-- Fonction ----
//-------------------
Tbl solp_helmholtz_minus (const Matrice &lap, const Matrice &nondege,
const Tbl &source, double alpha, double beta, int lq,
int base_r) {
// Routines de derivation
static Tbl (*solp_helmholtz_minus[MAX_BASE]) (const Matrice&, const Matrice&,
const Tbl&, double, double, int) ;
static int nap = 0 ;
// Premier appel
if (nap==0) {
nap = 1 ;
for (int i=0 ; i<MAX_BASE ; i++) {
solp_helmholtz_minus[i] = _solp_helmholtz_minus_pas_prevu ;
}
// Les routines existantes
solp_helmholtz_minus[R_CHEB >> TRA_R] = _solp_helmholtz_minus_r_cheb ;
solp_helmholtz_minus[R_CHEBU >> TRA_R] = _solp_helmholtz_minus_r_chebu ;
solp_helmholtz_minus[R_CHEBP >> TRA_R] = _solp_helmholtz_minus_r_chebp ;
solp_helmholtz_minus[R_CHEBI >> TRA_R] = _solp_helmholtz_minus_r_chebi ;
}
Tbl res(solp_helmholtz_minus[base_r] (lap, nondege, source, alpha, beta, lq)) ;
return res ;
}
}
|