File: star_bhns_spher.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (328 lines) | stat: -rw-r--r-- 9,699 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
 *  Method of class Star_bhns to compute a spherical star configuration
 *
 *    (see file star_bhns.h for documentation).
 *
 */

/*
 *   Copyright (c) 2005,2007 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char star_bhns_spher_C[] = "$Header: /cvsroot/Lorene/C++/Source/Star_bhns/star_bhns_spher.C,v 1.4 2014/10/13 08:53:41 j_novak Exp $" ;

/*
 * $Id: star_bhns_spher.C,v 1.4 2014/10/13 08:53:41 j_novak Exp $
 * $Log: star_bhns_spher.C,v $
 * Revision 1.4  2014/10/13 08:53:41  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:13:16  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2008/05/15 19:16:54  k_taniguchi
 * Change of some parameters.
 *
 * Revision 1.1  2007/06/22 01:32:19  k_taniguchi
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Star_bhns/star_bhns_spher.C,v 1.4 2014/10/13 08:53:41 j_novak Exp $
 *
 */

// C++ headers
//#include <>

// C headers
#include <cmath>

// Lorene headers
#include "star_bhns.h"
#include "param.h"
#include "cmp.h"
#include "tenseur.h"
#include "unites.h"

namespace Lorene {
void Star_bhns::equil_spher_bhns(double ent_c, double precis) {

    // Fundamental constants and units
    // -------------------------------
    using namespace Unites ;

    // Initializations
    // ---------------

    const Mg3d* mg = mp.get_mg() ;
    int nz = mg->get_nzone() ;

    // Index of the point at phi=0, theta=pi/2 at the surface of the star:
    int l_b = nzet - 1 ;
    int i_b = mg->get_nr(l_b) - 1 ;
    int j_b = mg->get_nt(l_b) - 1 ;
    int k_b = 0 ;

    // Value of the enthalpy defining the surface of the star
    double ent_b = 0. ;

    // Initialization of the enthalpy field to the constant value ent_c :
    ent = ent_c ;
    ent.annule(nzet, nz-1) ;

    // Corresponding profiles of baryon density, energy density and pressure
    equation_of_state() ;

    // Initial metric
    lapconf_auto = 1. ;
    lapconf_auto.std_spectral_base() ;
    confo_auto = 1. ;
    confo_auto.std_spectral_base() ;

    // Auxiliary quantities
    // --------------------

    // Affine mapping for solving the Poisson equations
    Map_af mpaff(mp) ;

    Param par_nul ;  // Param (null) for Map_af::poisson

    Scalar ent_jm1(mp) ;  // Enthalpy at previous step
    ent_jm1 = ent_c ;
    ent_jm1.std_spectral_base() ;
    ent_jm1.annule(nzet, nz-1) ;

    Scalar source_lapconf(mp) ;
    Scalar source_confo(mp) ;
    Scalar lapconf_auto_m1(mp) ;
    Scalar confo_auto_m1(mp) ;
    lapconf_auto_m1 = 0. ;
    confo_auto_m1 = 0. ;

    double diff_ent = 1. ;
    int mermax = 200 ;  // Maximum number of iterations

    double alpha_r = 1. ;

    //==========================================================//
    //                    Start of iteration                    //
    //==========================================================//

    for (int mer=0 ; (diff_ent > precis) && (mer<mermax) ; mer++ ) {

      cout << "-----------------------------------------------" << endl ;
      cout << "step: " << mer << endl ;
      cout << "alpha_r: " << alpha_r << endl ;
      cout << "diff_ent = " << diff_ent << endl ;

      //----------------------------------------------------
      // Resolution of Poisson equation for lapconf function
      //----------------------------------------------------

      // Matter part of lapconf
      // ----------------------
      source_lapconf = qpig * lapconf_auto * pow(confo_auto,4.)
	* (0.5*ener + 3.*press) ;

      source_lapconf.inc_dzpuis(4-source_lapconf.get_dzpuis()) ;
      source_lapconf.std_spectral_base() ;

      Cmp sou_lapconf(source_lapconf) ;
      Cmp lapconf_cmp(lapconf_auto_m1) ;
      lapconf_cmp.set_etat_qcq() ;

      mpaff.poisson(sou_lapconf, par_nul, lapconf_cmp) ;

      // Re-construction of a scalar
      lapconf_auto_m1 = lapconf_cmp ;

      //-------------------------------------
      // Computation of the new radial scale
      //-------------------------------------

      double exp_ent_c = exp(ent_c) ;
      double exp_ent_b = exp(ent_b) ;

      double lap_auto_c = lapconf_auto_m1.val_grid_point(0,0,0,0) ;
      double lap_auto_b = lapconf_auto_m1.val_grid_point(l_b,k_b,j_b,i_b) ;

      double confo_c = confo_auto.val_grid_point(0,0,0,0) ;
      double confo_b = confo_auto.val_grid_point(l_b,k_b,j_b,i_b) ;

      double alpha_r2 = (exp_ent_b*confo_c - exp_ent_c*confo_b)
	/ ( exp_ent_c*confo_b*lap_auto_c
	    - exp_ent_b*confo_c*lap_auto_b )  ;

      alpha_r = sqrt(alpha_r2) ;

      // New radial scale
      mpaff.homothetie( alpha_r ) ;

      //----------------
      // First integral
      //----------------

      // Lapconf function
      lapconf_auto_m1 = alpha_r2 * lapconf_auto_m1 ;
      lapconf_auto = lapconf_auto_m1 + 1. ;

      // Enthalpy in all space
      double lapconfo_c = lapconf_auto.val_grid_point(0,0,0,0) ;
      confo_c = confo_auto.val_grid_point(0,0,0,0) ;
      ent = ent_c + log(lapconfo_c) - log(confo_c)
	- log(lapconf_auto) + log(confo_auto) ;
      ent.std_spectral_base() ;

      //-------------------
      // Equation of state
      //-------------------

      equation_of_state() ;

      //-----------------------------------------------------
      // Resolution of Poisson equation for conformal factor
      //-----------------------------------------------------

      source_confo = - 0.5 * qpig * pow(confo_auto,5.) * ener ;
      source_confo.inc_dzpuis(4-source_confo.get_dzpuis()) ;
      source_confo.std_spectral_base() ;

      Cmp sou_confo(source_confo) ;
      Cmp cnf_auto_cmp(confo_auto_m1) ;
      cnf_auto_cmp.set_etat_qcq() ;

      mpaff.poisson(sou_confo, par_nul, cnf_auto_cmp) ;

      // Re-construction of a scalr
      confo_auto_m1 = cnf_auto_cmp ;

      confo_auto = confo_auto_m1 + 1. ;

      // Relative difference with enthalphy at the previous step
      // -------------------------------------------------------

      diff_ent = norme( diffrel(ent, ent_jm1) ) / nzet ;

      // Next step
      // ---------

      ent_jm1 = ent ;

    } // End of iteration loop

    //========================================================//
    //                    End of iteration                    //
    //========================================================//

    // The mapping is transfered to that of the star
    // ---------------------------------------------
    mp = mpaff ;

    // Sets values
    // -----------

    // ... hydro
    ent.annule(nzet, nz-1) ;

    ener_euler = ener ;
    s_euler = 3. * press ;
    gam_euler = 1. ;
    for(int i=1; i<=3; i++)
      u_euler.set(i) = 0 ;

    // ... metric
    lapconf_tot = lapconf_auto ;
    lapse_auto = lapconf_auto / confo_auto ;
    lapse_tot = lapse_auto ;
    confo_tot = confo_auto ;
    psi4 = pow(confo_auto, 4.) ;
    for (int i=1; i<=3; i++)
      shift_auto.set(i) = 0. ;

    // Info printing
    // -------------

    cout << endl
	 << "Characteristics of the star obtained by Star_bhns::equil_spher_bhns : "
	 << endl
	 << "-------------------------------------------------------------------   "
	 << endl ;

    cout.precision(16) ;
    double ray = mp.val_r(l_b, 1., M_PI/2., 0) ;
    cout << "Coordinate radius :               "
	 << ray / km << " [km]" << endl ;

    double rcirc = ray * sqrt(psi4.val_grid_point(l_b, k_b, j_b, i_b) ) ;
    double compact = qpig/(4.*M_PI) * mass_g_bhns() / rcirc ;

    cout << "Circumferential radius R :        "
	 << rcirc/km  << " [km]" << endl ;
    cout << "Baryon mass :                     "
	 << mass_b_bhns(0,0.,1.)/msol << " [Mo]" << endl ;
    cout << "Gravitational mass M :            "
	 << mass_g_bhns()/msol << " [Mo]" << endl ;
    cout << "Compaction parameter GM/(c^2 R) : " << compact << endl ;

    //----------------
    // Virial theorem
    //----------------

    //... Pressure term
    Scalar source(mp) ;
    source = qpig * pow(confo_auto,6.) * s_euler ;
    source.std_spectral_base() ;
    double vir_mat = source.integrale() ;

    //... Gravitational term
    Scalar tmp1(mp) ;
    tmp1 = confo_auto.dsdr() ;
    tmp1.std_spectral_base() ;

    Scalar tmp2(mp) ;
    tmp2 = confo_auto * lapconf_auto.dsdr() / lapconf_auto  - tmp1 ;
    tmp2.std_spectral_base() ;

    source = 2. * tmp1 * tmp1 - tmp2 * tmp2 ;

    /*
    Scalar tmp1(mp) ;
    tmp1 = log(lapse_auto) ;
    tmp1.std_spectral_base() ;

    Scalar tmp2(mp) ;
    tmp2 = log(confo_auto) ;
    tmp2.std_spectral_base() ;

    source = confo_auto * confo_auto
      * ( 2. * tmp2.dsdr() * tmp2.dsdr() - tmp1.dsdr() * tmp1.dsdr() ) ;
    */
    source.std_spectral_base() ;	    
    double vir_grav = source.integrale() ;

    //... Relative error on the virial identity GRV3
    double grv3 = ( vir_mat + vir_grav ) / vir_mat ;

    cout << "Virial theorem GRV3 : " << endl ;
    cout << "     3P term :        " << vir_mat << endl ;
    cout << "     grav. term :     " << vir_grav << endl ;
    cout << "     relative error : " << grv3 << endl ;

}
}