1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
/*
* Copyright (c) 1999-2001 Philippe Grandclement
* Copyright (c) 2000-2001 Eric Gourgoulhon
* Copyright (c) 2002 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char tenseur_operateur_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tenseur/tenseur_operateur.C,v 1.10 2014/10/13 08:53:42 j_novak Exp $" ;
/*
* $Id: tenseur_operateur.C,v 1.10 2014/10/13 08:53:42 j_novak Exp $
* $Log: tenseur_operateur.C,v $
* Revision 1.10 2014/10/13 08:53:42 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.9 2014/10/06 15:13:19 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.8 2004/05/27 07:17:19 p_grandclement
* Correction of some shadowed variables
*
* Revision 1.7 2003/06/20 14:53:38 f_limousin
* Add the function contract_desal()
*
* Revision 1.6 2003/03/03 19:38:41 f_limousin
* Suppression of an assert on a metric associated with a tensor.
*
* Revision 1.5 2002/10/16 14:37:14 j_novak
* Reorganization of #include instructions of standard C++, in order to
* use experimental version 3 of gcc.
*
* Revision 1.4 2002/09/10 13:44:17 j_novak
* The method "manipule" of one indice has been removed for Tenseur_sym objects
* (the result cannot be a Tenseur_sym).
* The method "sans_trace" now computes the traceless part of a Tenseur (or
* Tenseur_sym) of valence 2.
*
* Revision 1.3 2002/09/06 14:49:25 j_novak
* Added method lie_derive for Tenseur and Tenseur_sym.
* Corrected various errors for derive_cov and arithmetic.
*
* Revision 1.2 2002/08/07 16:14:11 j_novak
* class Tenseur can now also handle tensor densities, this should be transparent to older codes
*
* Revision 1.1.1.1 2001/11/20 15:19:30 e_gourgoulhon
* LORENE
*
* Revision 2.11 2001/08/27 10:04:21 eric
* Ajout de l'operator% (produit tensoriel avec desaliasing)
*
* Revision 2.10 2001/05/26 15:43:17 eric
* Ajout de la fonction flat_scalar_prod_desal (desaliasage)
*
* Revision 2.9 2000/10/06 15:08:40 eric
* Traitement des cas ETATZERO dans contract et flat_scal_prod
*
* Revision 2.8 2000/09/13 09:43:29 eric
* Modif skxk : appel des nouvelles fonctions Valeur::mult_cp() et
* Valeur::mult_sp() pour la multiplication par cos(phi) et sin(phi).
*
* Revision 2.7 2000/02/09 19:32:11 eric
* MODIF IMPORTANTE: la triade de decomposition est desormais passee en
* argument des constructeurs.
*
* Revision 2.6 2000/02/01 14:14:25 eric
* Ajout de la fonction amie flat_scalar_prod.
*
* Revision 2.5 2000/01/21 12:59:18 phil
* ajout de skxk
*
* Revision 2.4 2000/01/14 09:29:43 eric
* *** empty log message ***
*
* Revision 2.3 2000/01/13 17:22:37 phil
* la fonction contraction de deux tenseurs ne passe plus par produit tensoriel
*
* Revision 2.2 2000/01/11 11:14:29 eric
* Changement de nom pour la base vectorielle : base --> triad
*
* Revision 2.1 2000/01/10 17:25:15 eric
* Gestion des bases vectorielles (triades de decomposition).
*
* Revision 2.0 1999/12/02 17:19:06 phil
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tenseur/tenseur_operateur.C,v 1.10 2014/10/13 08:53:42 j_novak Exp $
*
*/
// Headers C
#include <cstdlib>
#include <cassert>
#include <cmath>
// Headers Lorene
#include "tenseur.h"
#include "metrique.h"
namespace Lorene {
Tenseur operator*(const Tenseur& t1, const Tenseur& t2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
assert (t1.mp == t2.mp) ;
int val_res = t1.valence + t2.valence ;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
// assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
// cas scalaire :
if (val_res == 0) {
Tenseur scal(*t1.mp, met_res, poids_res) ;
// cas ou un des deux est nul :
if ((t1.etat == ETATZERO) || (t2.etat == ETATZERO))
scal.set_etat_zero() ;
else {
scal.set_etat_qcq() ;
scal.set() = t1() * t2() ;
}
return scal ;
}
else {
Itbl tipe (val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<t1.valence ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i=0 ; i<t2.valence ; i++)
tipe.set(i+t1.valence) = t2.type_indice(i) ;
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
const Base_vect* triad_res ;
if (t1.valence != 0) {
triad_res = t1.get_triad() ;
}
else{
triad_res = t2.get_triad() ;
}
Tenseur res(*t1.mp, val_res, tipe, triad_res, met_res, poids_res) ;
if ((t1.etat == ETATZERO) || (t2.etat == ETATZERO))
res.set_etat_zero() ;
else {
res.set_etat_qcq() ;
Itbl jeux_indice_t1 (t1.valence) ;
jeux_indice_t1.set_etat_qcq() ;
Itbl jeux_indice_t2 (t2.valence) ;
jeux_indice_t2.set_etat_qcq() ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl jeux_indice_res(res.donne_indices(i)) ;
for (int j=0 ; j<t1.valence ; j++)
jeux_indice_t1.set(j) = jeux_indice_res(j) ;
for (int j=0 ; j<t2.valence ; j++)
jeux_indice_t2.set(j) = jeux_indice_res(j+t1.valence) ;
res.set(jeux_indice_res) = t1(jeux_indice_t1)*t2(jeux_indice_t2) ;
}
}
return res ;
}
}
//------------------------------------//
// Tensorial product wiht desaliasing //
//------------------------------------//
Tenseur operator%(const Tenseur& t1, const Tenseur& t2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
assert (t1.mp == t2.mp) ;
int val_res = t1.valence + t2.valence ;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
// assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
// cas scalaire :
if (val_res == 0) {
Tenseur scal(*t1.mp, met_res, poids_res) ;
// cas ou un des deux est nul :
if ((t1.etat == ETATZERO) || (t2.etat == ETATZERO))
scal.set_etat_zero() ;
else {
scal.set_etat_qcq() ;
scal.set() = t1() % t2() ;
}
return scal ;
}
else {
Itbl tipe (val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<t1.valence ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i=0 ; i<t2.valence ; i++)
tipe.set(i+t1.valence) = t2.type_indice(i) ;
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
const Base_vect* triad_res ;
if (t1.valence != 0) {
triad_res = t1.get_triad() ;
}
else{
triad_res = t2.get_triad() ;
}
Tenseur res(*t1.mp, val_res, tipe, triad_res, met_res, poids_res) ;
if ((t1.etat == ETATZERO) || (t2.etat == ETATZERO))
res.set_etat_zero() ;
else {
res.set_etat_qcq() ;
Itbl jeux_indice_t1 (t1.valence) ;
jeux_indice_t1.set_etat_qcq() ;
Itbl jeux_indice_t2 (t2.valence) ;
jeux_indice_t2.set_etat_qcq() ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl jeux_indice_res(res.donne_indices(i)) ;
for (int j=0 ; j<t1.valence ; j++)
jeux_indice_t1.set(j) = jeux_indice_res(j) ;
for (int j=0 ; j<t2.valence ; j++)
jeux_indice_t2.set(j) = jeux_indice_res(j+t1.valence) ;
res.set(jeux_indice_res) = t1(jeux_indice_t1) %
t2(jeux_indice_t2) ;
}
}
return res ;
}
}
Tenseur contract(const Tenseur& source, int ind_1, int ind_2) {
// Les verifications :
assert (source.etat != ETATNONDEF) ;
assert ((ind_1 >= 0) && (ind_1 < source.valence)) ;
assert ((ind_2 >= 0) && (ind_2 < source.valence)) ;
assert (source.type_indice(ind_1) != source.type_indice(ind_2)) ;
// On veut ind_1 < ind_2 :
if (ind_1 > ind_2) {
int auxi = ind_2 ;
ind_2 = ind_1 ;
ind_1 = auxi ;
}
// On construit le resultat :
int val_res = source.valence - 2 ;
Itbl tipe (val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<ind_1 ; i++)
tipe.set(i) = source.type_indice(i) ;
for (int i=ind_1 ; i<ind_2-1 ; i++)
tipe.set(i) = source.type_indice(i+1) ;
for (int i = ind_2-1 ; i<val_res ; i++)
tipe.set(i) = source.type_indice(i+2) ;
Tenseur res(*source.mp, val_res, tipe, source.triad, source.metric,
source.poids) ;
// Cas particulier d'une source nulle
if (source.etat == ETATZERO) {
res.set_etat_zero() ;
return res ;
}
res.set_etat_qcq() ;
Cmp work(source.mp) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_source(source.valence) ;
jeux_indice_source.set_etat_qcq() ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl jeux_indice_res (res.donne_indices(i)) ;
for (int j=0 ; j<ind_1 ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j) ;
for (int j=ind_1+1 ; j<ind_2 ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j-1) ;
for (int j=ind_2+1 ; j<source.valence ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j-2) ;
work.set_etat_zero() ;
for (int j=0 ; j<3 ; j++) {
jeux_indice_source.set(ind_1) = j ;
jeux_indice_source.set(ind_2) = j ;
work = work + source(jeux_indice_source) ;
}
res.set(jeux_indice_res) = work ;
}
return res ;
}
Tenseur contract (const Tenseur& t1, int ind1, const Tenseur& t2, int ind2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
// Verifs :
assert ((ind1>=0) && (ind1<t1.valence)) ;
assert ((ind2>=0) && (ind2<t2.valence)) ;
assert (*(t1.mp) == *(t2.mp)) ;
// Contraction possible ?
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
assert (t1.type_indice(ind1) != t2.type_indice(ind2)) ;
int val_res = t1.valence + t2.valence - 2;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
// assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
Itbl tipe(val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<ind1 ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i=ind1 ; i<t1.valence-1 ; i++)
tipe.set(i) = t1.type_indice(i+1) ;
for (int i=t1.valence-1 ; i<t1.valence+ind2-1 ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+1) ;
for (int i = t1.valence+ind2-1 ; i<val_res ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+2) ;
const Base_vect* triad_res = (val_res == 0) ? 0x0 : t1.get_triad() ;
Tenseur res(*t1.mp, val_res, tipe, triad_res, met_res, poids_res) ;
// Cas particulier ou l'un des deux tenseurs est nul
if ( (t1.etat == ETATZERO) || (t2.etat == ETATZERO) ) {
res.set_etat_zero() ;
return res ;
}
res.set_etat_qcq() ;
Cmp work(t1.mp) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_t1(t1.valence) ;
Itbl jeux_indice_t2(t2.valence) ;
jeux_indice_t1.set_etat_qcq() ;
jeux_indice_t2.set_etat_qcq() ;
for (int comp=0 ; comp<res.n_comp ; comp++) {
Itbl jeux_indice_res (res.donne_indices(comp)) ;
for (int i=0 ; i<ind1 ; i++)
jeux_indice_t1.set(i) = jeux_indice_res(i) ;
for (int i=ind1+1 ; i<t1.valence ; i++)
jeux_indice_t1.set(i) = jeux_indice_res(i-1) ;
for (int i=0 ; i<ind2 ; i++)
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-1) ;
for (int i=ind2+1 ; i<t2.valence ; i++)
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-2) ;
work.set_etat_zero() ;
for (int j=0 ; j<3 ; j++) {
jeux_indice_t1.set(ind1) = j ;
jeux_indice_t2.set(ind2) = j ;
work = work + t1(jeux_indice_t1)*t2(jeux_indice_t2) ;
}
res.set(jeux_indice_res) = work ;
}
return res ;
}
Tenseur contract_desal (const Tenseur& t1, int ind1, const Tenseur& t2, int ind2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
// Verifs :
assert ((ind1>=0) && (ind1<t1.valence)) ;
assert ((ind2>=0) && (ind2<t2.valence)) ;
assert (t1.mp == t2.mp) ;
// Contraction possible ?
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
assert (t1.type_indice(ind1) != t2.type_indice(ind2)) ;
int val_res = t1.valence + t2.valence - 2;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
// assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
Itbl tipe(val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<ind1 ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i=ind1 ; i<t1.valence-1 ; i++)
tipe.set(i) = t1.type_indice(i+1) ;
for (int i=t1.valence-1 ; i<t1.valence+ind2-1 ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+1) ;
for (int i = t1.valence+ind2-1 ; i<val_res ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+2) ;
const Base_vect* triad_res = (val_res == 0) ? 0x0 : t1.get_triad() ;
Tenseur res(*t1.mp, val_res, tipe, triad_res, met_res, poids_res) ;
// Cas particulier ou l'un des deux tenseurs est nul
if ( (t1.etat == ETATZERO) || (t2.etat == ETATZERO) ) {
res.set_etat_zero() ;
return res ;
}
res.set_etat_qcq() ;
Cmp work(t1.mp) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_t1(t1.valence) ;
Itbl jeux_indice_t2(t2.valence) ;
jeux_indice_t1.set_etat_qcq() ;
jeux_indice_t2.set_etat_qcq() ;
for (int comp=0 ; comp<res.n_comp ; comp++) {
Itbl jeux_indice_res (res.donne_indices(comp)) ;
for (int i=0 ; i<ind1 ; i++)
jeux_indice_t1.set(i) = jeux_indice_res(i) ;
for (int i=ind1+1 ; i<t1.valence ; i++)
jeux_indice_t1.set(i) = jeux_indice_res(i-1) ;
for (int i=0 ; i<ind2 ; i++)
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-1) ;
for (int i=ind2+1 ; i<t2.valence ; i++)
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-2) ;
work.set_etat_zero() ;
for (int j=0 ; j<3 ; j++) {
jeux_indice_t1.set(ind1) = j ;
jeux_indice_t2.set(ind2) = j ;
work = work + t1(jeux_indice_t1)%t2(jeux_indice_t2) ;
}
res.set(jeux_indice_res) = work ;
}
return res ;
}
Tenseur manipule(const Tenseur& t1, const Metrique& met, int place) {
assert (t1.etat != ETATNONDEF) ;
assert (met.get_etat() != ETATNONDEF) ;
int valen = t1.valence ;
assert (valen != 0) ; // Aucun interet pour un scalaire...
assert ((place >=0) && (place < valen)) ;
Itbl tipe (valen) ;
tipe.set_etat_qcq() ;
tipe.set(0) = -t1.type_indice(place) ;
for (int i=1 ; i<place+1 ; i++)
tipe.set(i) = t1.type_indice(i-1) ;
for (int i=place+1 ; i<valen ; i++)
tipe.set(i) = t1.type_indice(i) ;
Tenseur auxi(*t1.mp, valen, tipe, t1.triad) ;
if (t1.type_indice(place) == COV)
auxi = contract (met.con(), 1, t1, place) ;
else
auxi = contract (met.cov(), 1, t1, place) ;
// On doit remettre les indices a la bonne place ...
for (int i=0 ; i<valen ; i++)
tipe.set(i) = t1.type_indice(i) ;
tipe.set(place) *= -1 ;
Tenseur res(*t1.mp, valen, tipe, t1.triad, auxi.metric, auxi.poids) ;
res.set_etat_qcq() ;
Itbl place_auxi(valen) ;
place_auxi.set_etat_qcq() ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl place_res (res.donne_indices(i)) ;
place_auxi.set(0) = place_res(place) ;
for (int j=1 ; j<place+1 ; j++)
place_auxi.set(j) = place_res(j-1) ;
place_res.set(place) = place_auxi(0) ;
for (int j=place+1 ; j<valen ; j++)
place_auxi.set(j) = place_res(j);
res.set(place_res) = auxi(place_auxi) ;
}
return res ;
}
Tenseur manipule (const Tenseur& t1, const Metrique& met) {
Tenseur* auxi ;
Tenseur* auxi_old = new Tenseur(t1) ;
for (int i=0 ; i<t1.valence ; i++) {
auxi = new Tenseur(manipule(*auxi_old, met, i)) ;
delete auxi_old ;
auxi_old = new Tenseur(*auxi) ;
delete auxi ;
}
Tenseur result(*auxi_old) ;
delete auxi_old ;
return result ;
}
Tenseur skxk(const Tenseur& source) {
// Verification
assert (source.valence > 0) ;
assert (source.etat != ETATNONDEF) ;
assert (*source.triad == source.mp->get_bvect_cart()) ;
// Le resultat :
int val_res = source.valence-1 ;
Itbl tipe (val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<val_res ; i++)
tipe.set(i) = source.type_indice(i) ;
Tenseur res (*source.mp, val_res, tipe, source.triad, source.metric,
source.poids) ;
if (source.etat == ETATZERO)
res.set_etat_zero() ;
else {
res.set_etat_qcq() ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl indices_res (res.donne_indices(i)) ;
Itbl indices_so (val_res+1) ;
indices_so.set_etat_qcq() ;
for (int j=0 ; j<val_res ; j++)
indices_so.set(j) = indices_res(j) ;
// x S_x
// -----
indices_so.set(val_res) = 0 ;
Cmp resu(source(indices_so)) ;
resu.mult_r() ; // Multipl. by r
// What follows is valid only for a mapping of class Map_radial :
assert( dynamic_cast<const Map_radial*>(source.get_mp()) != 0x0) ;
resu.va = (resu.va).mult_st() ; // Multipl. by sin(theta)
resu.va = (resu.va).mult_cp() ; // Multipl. by cos(phi)
// y S_y
// -----
indices_so.set(val_res) = 1 ;
Cmp auxiliaire (source(indices_so)) ;
auxiliaire.mult_r() ; // Multipl. by r
auxiliaire.va = (auxiliaire.va).mult_st() ; // Multipl. by sin(theta)
auxiliaire.va = (auxiliaire.va).mult_sp() ; // Multipl. by sin(phi)
resu = resu + auxiliaire ;
// z S_z
// -----
indices_so.set(val_res) = 2 ;
auxiliaire = source(indices_so) ;
auxiliaire.mult_r() ; // Multipl. by r
auxiliaire.va = (auxiliaire.va).mult_ct() ; // Multipl. by cos(theta)
resu = resu + auxiliaire ;
res.set(indices_res) = resu ;
// The End
// -------
}
}
return res ;
}
Tenseur flat_scalar_prod(const Tenseur& t1, const Tenseur& t2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
// Verifs :
assert (t1.mp == t2.mp) ;
// Contraction possible ?
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
int val_res = t1.valence + t2.valence - 2;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
Itbl tipe(val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<t1.valence - 1 ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i = t1.valence-1 ; i<val_res ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+2) ;
Tenseur res(*t1.mp, val_res, tipe, t1.triad, met_res, poids_res) ;
// Cas particulier ou l'un des deux tenseurs est nul
if ( (t1.etat == ETATZERO) || (t2.etat == ETATZERO) ) {
res.set_etat_zero() ;
return res ;
}
res.set_etat_qcq() ;
Cmp work(t1.mp) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_t1(t1.valence) ;
Itbl jeux_indice_t2(t2.valence) ;
jeux_indice_t1.set_etat_qcq() ;
jeux_indice_t2.set_etat_qcq() ;
for (int ir=0 ; ir<res.n_comp ; ir++) { // Boucle sur les composantes
// du resultat
// Indices du resultat correspondant a la position ir :
Itbl jeux_indice_res = res.donne_indices(ir) ;
// Premiers indices correspondant dans t1 :
for (int i=0 ; i<t1.valence - 1 ; i++) {
jeux_indice_t1.set(i) = jeux_indice_res(i) ;
}
// Derniers indices correspondant dans t2 :
for (int i=1 ; i<t2.valence ; i++) {
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-2) ;
}
work.set_etat_zero() ;
// Sommation sur le dernier indice de t1 et le premier de t2 :
for (int j=0 ; j<3 ; j++) {
jeux_indice_t1.set(t1.valence - 1) = j ;
jeux_indice_t2.set(0) = j ;
work = work + t1(jeux_indice_t1)*t2(jeux_indice_t2) ;
}
res.set(jeux_indice_res) = work ;
} // fin de la boucle sur les composantes du resultat
return res ;
}
Tenseur flat_scalar_prod_desal(const Tenseur& t1, const Tenseur& t2) {
assert ((t1.etat != ETATNONDEF) && (t2.etat != ETATNONDEF)) ;
// Verifs :
assert (t1.mp == t2.mp) ;
// Contraction possible ?
if ( (t1.valence != 0) && (t2.valence != 0) ) {
assert ( *(t1.get_triad()) == *(t2.get_triad()) ) ;
}
int val_res = t1.valence + t2.valence - 2;
double poids_res = t1.poids + t2.poids ;
poids_res = (fabs(poids_res) < 1.e-10 ? 0. : poids_res) ;
const Metrique* met_res = 0x0 ;
if (poids_res != 0.) {
assert((t1.metric != 0x0) || (t2.metric != 0x0)) ;
if (t1.metric != 0x0) met_res = t1.metric ;
else met_res = t2.metric ;
}
Itbl tipe(val_res) ;
tipe.set_etat_qcq() ;
for (int i=0 ; i<t1.valence - 1 ; i++)
tipe.set(i) = t1.type_indice(i) ;
for (int i = t1.valence-1 ; i<val_res ; i++)
tipe.set(i) = t2.type_indice(i-t1.valence+2) ;
Tenseur res(*t1.mp, val_res, tipe, t1.triad, met_res, poids_res) ;
// Cas particulier ou l'un des deux tenseurs est nul
if ( (t1.etat == ETATZERO) || (t2.etat == ETATZERO) ) {
res.set_etat_zero() ;
return res ;
}
res.set_etat_qcq() ;
Cmp work(t1.mp) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_t1(t1.valence) ;
Itbl jeux_indice_t2(t2.valence) ;
jeux_indice_t1.set_etat_qcq() ;
jeux_indice_t2.set_etat_qcq() ;
for (int ir=0 ; ir<res.n_comp ; ir++) { // Boucle sur les composantes
// du resultat
// Indices du resultat correspondant a la position ir :
Itbl jeux_indice_res = res.donne_indices(ir) ;
// Premiers indices correspondant dans t1 :
for (int i=0 ; i<t1.valence - 1 ; i++) {
jeux_indice_t1.set(i) = jeux_indice_res(i) ;
}
// Derniers indices correspondant dans t2 :
for (int i=1 ; i<t2.valence ; i++) {
jeux_indice_t2.set(i) = jeux_indice_res(t1.valence+i-2) ;
}
work.set_etat_zero() ;
// Sommation sur le dernier indice de t1 et le premier de t2 :
for (int j=0 ; j<3 ; j++) {
jeux_indice_t1.set(t1.valence - 1) = j ;
jeux_indice_t2.set(0) = j ;
work = work + t1(jeux_indice_t1) % t2(jeux_indice_t2) ;
}
res.set(jeux_indice_res) = work ;
} // fin de la boucle sur les composantes du resultat
return res ;
}
Tenseur lie_derive (const Tenseur& t, const Tenseur& x, const Metrique* met)
{
assert ( (t.get_etat() != ETATNONDEF) && (x.get_etat() != ETATNONDEF) ) ;
assert(x.get_valence() == 1) ;
assert(x.get_type_indice(0) == CON) ;
assert(x.get_poids() == 0.) ;
assert(t.get_mp() == x.get_mp()) ;
int val = t.get_valence() ;
double poids = t.get_poids() ;
Itbl tipe (val+1) ;
tipe.set_etat_qcq() ;
tipe.set(0) = COV ;
Itbl tipx(2) ;
tipx.set_etat_qcq() ;
tipx.set(0) = COV ;
tipx.set(1) = CON ;
for (int i=0 ; i<val ; i++)
tipe.set(i+1) = t.get_type_indice(i) ;
Tenseur dt(*t.get_mp(), val+1, tipe, t.get_triad(), t.get_metric(), poids) ;
Tenseur dx(*x.get_mp(), 2, tipx, x.get_triad()) ;
if (met == 0x0) {
dx = x.gradient() ;
dt = t.gradient() ;
}
else {
dx = x.derive_cov(*met) ;
dt = t.derive_cov(*met) ;
}
Tenseur resu(contract(x,0,dt,0)) ;
Tenseur* auxi ;
if ((val!=0)&&(t.get_etat()!=ETATZERO)&&(x.get_etat()!=ETATZERO)) {
assert(t.get_triad()->identify() == x.get_triad()->identify()) ;
for (int i=0 ; i<val ; i++) {
if (t.get_type_indice(i) == COV) {
auxi = new Tenseur(contract(t,i,dx,1)) ;
Itbl indices_aux(val) ;
indices_aux.set_etat_qcq() ;
for (int j=0 ; j<resu.get_n_comp() ; j++) {
Itbl indices (resu.donne_indices(j)) ;
indices_aux.set(val-1) = indices(i) ;
for (int idx=0 ; idx<val-1 ; idx++)
if (idx<i)
indices_aux.set(idx) = indices(idx) ;
else
indices_aux.set(idx) = indices(idx+1) ;
resu.set(indices) += (*auxi)(indices_aux) ;
}
}
else {
auxi = new Tenseur(contract(t,i,dx,0)) ;
Itbl indices_aux(val) ;
indices_aux.set_etat_qcq() ;
//On range comme il faut :
for (int j=0 ; j<resu.get_n_comp() ; j++) {
Itbl indices (resu.donne_indices(j)) ;
indices_aux.set(val-1) = indices(i) ;
for (int idx=0 ; idx<val-1 ; idx++)
if (idx<i)
indices_aux.set(idx) = indices(idx) ;
else
indices_aux.set(idx) = indices(idx+1) ;
resu.set(indices) -= (*auxi)(indices_aux) ;
}
}
delete auxi ;
}
}
if ((poids != 0.)&&(t.get_etat()!=ETATZERO)&&(x.get_etat()!=ETATZERO))
resu = resu + poids*contract(dx,0,1)*t ;
return resu ;
}
Tenseur sans_trace(const Tenseur& t, const Metrique& metre)
{
assert(t.get_etat() != ETATNONDEF) ;
assert(metre.get_etat() != ETATNONDEF) ;
assert(t.get_valence() == 2) ;
Tenseur resu(t) ;
if (resu.get_etat() == ETATZERO) return resu ;
assert(resu.get_etat() == ETATQCQ) ;
int t0 = t.get_type_indice(0) ;
int t1 = t.get_type_indice(1) ;
Itbl mix(2) ;
mix.set_etat_qcq() ;
mix.set(0) = (t0 == t1 ? -t0 : t0) ;
mix.set(1) = t1 ;
Tenseur tmp(*t.get_mp(), 2, mix, *t.get_triad(), t.get_metric(),
t.get_poids()) ;
if (t0 == t1)
tmp = manipule(t, metre, 0) ;
else
tmp = t ;
Tenseur trace(contract(tmp, 0, 1)) ;
if (t0 == t1) {
switch (t0) {
case COV : {
resu = resu - 1./3.*trace * metre.cov() ;
break ;
}
case CON : {
resu = resu - 1./3.*trace * metre.con() ;
break ;
}
default :
cout << "Erreur bizarre dans sans_trace!" << endl ;
abort() ;
break ;
}
}
else {
Tenseur_sym delta(*t.get_mp(), 2, mix, *t.get_triad(),
t.get_metric(), t.get_poids()) ;
delta.set_etat_qcq() ;
for (int i=0; i<3; i++)
for (int j=i; j<3; j++)
delta.set(i,j) = (i==j ? 1 : 0) ;
resu = resu - trace/3. * delta ;
}
resu.set_std_base() ;
return resu ;
}
}
|