File: kerrschild_ah.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (403 lines) | stat: -rw-r--r-- 11,536 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 *  Test of the AH finder on Kerr-Schild metric
 *
 *    (see file ah_finder.h for documentation).
 *
 */

/*
 *   Copyright (c) 2005  Lap-Ming Lin & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char kerrschild_ah_C[] = "$Header: /cvsroot/Lorene/Codes/App_hor/kerrschild_ah.C,v 1.7 2014/10/13 08:53:52 j_novak Exp $" ;

/*
 * $Id: kerrschild_ah.C,v 1.7 2014/10/13 08:53:52 j_novak Exp $
 * $Log: kerrschild_ah.C,v $
 * Revision 1.7  2014/10/13 08:53:52  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.6  2014/10/06 15:09:40  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.5  2012/01/02 13:52:57  j_novak
 * New parameter 'verbose' to get less output if needed.
 *
 * Revision 1.4  2006/05/30 13:06:13  n_vasset
 *   Implemented function P_COSSIN_I in base_val_phi_funct.C
 *
 * Revision 1.3  2005/12/07 11:11:46  lm_lin
 *
 * Add option to turn off screen output during iterations.
 *
 * Revision 1.2  2005/11/17 14:27:51  lm_lin
 *
 * Modified according to the latest changes in the AH finder.
 *
 * Revision 1.1  2005/10/13 08:53:22  j_novak
 * Main program to test the apparent horizon finder.
 *
 *
 * $Header: /cvsroot/Lorene/Codes/App_hor/kerrschild_ah.C,v 1.7 2014/10/13 08:53:52 j_novak Exp $
 *
 */

// C headers
#include <cmath>

// Lorene headers
#include "app_hor.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"


using namespace Lorene ;

int main() {

  const int nz = 3 ; // Number of domains
  int nr = 17 ; // Number of collocation points in r in each domain
  int nt = 17 ; // Number of collocation points in theta in each domain
  int np = 4 ; // 4 points in phi for rotation to/from cartesian components
      
  int symmetry_theta = SYM ; // symmetry w.r.t. the equatoial plane
                             // ##Bug report: symmetry_theta=NONSYM does not work correctly!
                             //     (related to change_triad....)
  int symmetry_phi = SYM ; // symmetry in phi

  int nbr[] = {nr, nr, nr} ;
  int nbt[] = {nt, nt, nt} ;
  int nbp[] = {np, np, np} ;

  int type_r_std[] = {FIN, FIN, UNSURR} ; // sampling for the standard mapping
  int type_r_2[] = {FIN, FIN, FIN} ; // sampling for the 2nd mapping

  // Construct 3D grid for the standard mapping (with nucleus)
  Mg3d mgrid(nz, nbr, type_r_std, nbt, symmetry_theta, nbp, symmetry_phi) ;
  

  // Construct 3D grid for the 2nd mapping (without nucleus)
  // The apparent horizon is defined on the 2nd mapping
  Mg3d mgrid_2(nz, nbr, type_r_2, nbt, symmetry_theta, nbp, symmetry_phi) ;


  // Construct angular grid for h(theta,phi) 
  const Mg3d& g_angu = *mgrid_2.get_angu() ;

  // orig_lim_1(2) is used to cut out the singular region....
  // note: For the purpose of interpolating the metric defined on the 1st mapping to 
  //       that on the 2nd one, you must choose orig_lim_2 >= orig_lim_1
  double orig_lim_1 = 0.55 ;
  double orig_lim_2 = 0.55 ; 

  double r_limits_std[] = {orig_lim_1, 1.5, 3.5, __infinity} ; // for the 1st mapping
  double r_limits_2[] = {orig_lim_2, 1., 2., 3.} ; // for the 2nd mapping
  //note: the outer boundary of the 2nd mapping should not be in the compactified domain 
  //      of the 1st mapping (for the purpose of interpolation)
  

  // Standard mapping
  Map_af map(mgrid, r_limits_std) ;

  // 2nd mapping 
  Map_af map_2(mgrid_2, r_limits_2) ; 

  const Base_vect_spher& bspher = map.get_bvect_spher() ;
  const Base_vect_spher& bspher2 = map_2.get_bvect_spher() ;

  // Some helpful stuff...
//  const Coord& rr = map_2.r ;
  const Coord& theta = map_2.tet ;
  const Coord& phi = map_2.phi ;
  const Coord& costh = map_2.cost ;
  const Coord& cosph = map_2.cosp ;
  const Coord& sinth = map_2.sint ;
  const Coord& sinph = map_2.sinp ;


  // User's input of \gamma_{ij} & K_{ij}
  Sym_tensor gam_dd_in(map, COV, bspher) ;
  Sym_tensor k_dd_in(map, COV, bspher) ;

  // The \gamma_{ij} & K_{ij} defined on the 2nd mapping 
  Sym_tensor gam_dd(map_2, COV, bspher2) ;
  Sym_tensor k_dd(map_2, COV, bspher2) ;


  
  //Parameters to control the iteration

  bool verbose = true ;
  bool print = true ;
  double tol = 1.e-10 ;
  double tol_exp = 1.e-8 ;
  int it_max  = 100 ;  
  int it_relax = 100 ;
  double relax_fac = 1. ;

  // Parameters for the initial guess to the 2-surface h
  // "aa=bb=cc=R" corresponds to a sphere of radius R (usually good enough)
  // If you want aa != bb, remember to set "symmetry_phi = NONSYM"
  double aa = 1.5 ; 
  double bb = 1.5 ;   
  double cc = 1.5 ;


  // Parameters for the analytic model input:

  double mass = 0.5 ;
  double kerr_a = 0.3 ; 

  
  Valeur h_correct(g_angu) ;  // Analytic result h(\theta,phi) for comparison 
  h_correct.annule_hard() ;



      //***** Kerr-Schild data (original Cartesian form) ********//


    const Coord& xx = map.x ;
    const Coord& yy = map.y ;
    const Coord& zz = map.z ;
    const Coord& rr1 = map.r ;

    Scalar x(map) ;
    x = xx ;

    Scalar y(map) ;
    y = yy ;

    Scalar z(map) ;
    z = zz ;

    Scalar r_rho(map) ;
    r_rho = rr1 ;


    // Define Boyer-Lindquist radial coordinate
    Scalar rbl(map) ;
    rbl = 0.5*(r_rho*r_rho - kerr_a*kerr_a) + 
      sqrt( 0.25*pow(r_rho*r_rho - kerr_a*kerr_a , 2) + kerr_a*kerr_a*z*z ) ;

    rbl = sqrt(rbl) ;
    rbl.std_spectral_base() ;


    Scalar hhh(map) ;
    hhh = mass*pow(rbl,3) / ( pow(rbl,4) + kerr_a*kerr_a*z*z ) ;    
    hhh.std_spectral_base() ;


    // Define Ingoing null vector 
    const Base_vect_cart& bcart = map.get_bvect_cart() ; //Cartesian base vector

    Vector lmu(map, COV, bcart) ; 

    lmu.set(1) = (rbl*x + kerr_a*y) / (rbl*rbl + kerr_a*kerr_a) ;
    lmu.set(2) = (rbl*y - kerr_a*x) / (rbl*rbl + kerr_a*kerr_a) ;
    lmu.set(3) = z / rbl ;
    lmu.std_spectral_base() ;


    // Lapse 
    Scalar lapse(map) ;

    lapse = pow( 1. + 2.*hhh , -0.5 ) ;
    lapse.std_spectral_base() ;


    //Shift
    Vector beta(map, COV, bcart) ;
    
    beta.set(1) = 2.*hhh*lmu.set(1) ;
    beta.set(2) = 2.*hhh*lmu.set(2) ;
    beta.set(3) = 2.*hhh*lmu.set(3) ;
    beta.std_spectral_base() ;
    

    // Define 3-metric (in cartesian basis)

    Sym_tensor g_tmp(map, COV, bcart) ; 

    g_tmp.set(1,1) = 1. + 2.*hhh*lmu.set(1)*lmu.set(1) ; 
    g_tmp.set(1,2) = 2.*hhh*lmu.set(1)*lmu.set(2) ; 
    g_tmp.set(1,3) = 2.*hhh*lmu.set(1)*lmu.set(3) ;
    g_tmp.set(2,2) = 1. + 2.*hhh*lmu.set(2)*lmu.set(2) ;
    g_tmp.set(2,3) = 2.*hhh*lmu.set(2)*lmu.set(3) ;
    g_tmp.set(3,3) = 1. + 2.*hhh*lmu.set(3)*lmu.set(3) ;

    g_tmp.std_spectral_base() ;

    
    //Change to spherical orthonormal basis

    g_tmp.change_triad(bspher) ; 
    beta.change_triad(bspher) ;

    gam_dd_in = g_tmp ;    

    const Metric gam_met(g_tmp) ;

    k_dd_in = 0.5*beta.ope_killing(gam_met) / lapse ;    

    gam_dd_in.std_spectral_base() ;
    k_dd_in.std_spectral_base() ;

    // Done with input data
    

    //-------------------------------------------------------------
    // Calculate the analytic AH surface for Kerr-Schild data 

      Scalar ct(map_2) ;  
      ct = costh ;
      ct.std_spectral_base() ;

      Scalar st(map_2) ;
      st = sinth ;
      st.std_spectral_base() ;

      Scalar cp(map_2) ;
      cp = cosph ;
      cp.std_spectral_base() ;

      Scalar sp(map_2) ;
      sp = sinph ;
      sp.std_spectral_base() ;


      Scalar h_tmp(map_2) ;

      double r_analy = mass + sqrt( mass*mass - kerr_a*kerr_a ) ;


      h_tmp = st*st / ( r_analy*r_analy + kerr_a*kerr_a ) + ct*ct/(r_analy*r_analy) ;
      h_tmp = 1./ sqrt( h_tmp ) ;

      h_tmp.std_spectral_base() ;


      for (int l=0; l<nz; l++) {
	  for (int k=0; k<np; k++) {
	      for (int j=0; j<nt; j++) {
		  for (int i=0; i<nr; i++) {
		      
		      h_correct.set(l,k,j,0)  = h_tmp.val_grid_point(l,k,j,i) ; 
		      
		  }
	      }
	  }
      }

      h_correct.std_base_scal() ;


      // End calculate the correct AH surface
      //-------------------------------------------------------------

    //******** End Kerr-Schild data (original Cartesian form) *********//


      // Interpolate the input data from the mapping "map" to "map_2"
      // on which the apparent horizon is to be found. 
      // Interpolate gam_dd_in (k_dd_in) to gam_dd (k_dd)
      // (This part is to be removed later.....)

      k_dd_in.dec_dzpuis(2) ; //The dzpuis of the Scalar to be imported 
                          //must be zero!

      gam_dd.set(1,1).import( gam_dd_in.set(1,1) ) ;
      gam_dd.set(1,2).import( gam_dd_in.set(1,2) ) ;
      gam_dd.set(1,3).import( gam_dd_in.set(1,3) ) ;
      gam_dd.set(2,2).import( gam_dd_in.set(2,2) ) ;
      gam_dd.set(2,3).import( gam_dd_in.set(2,3) ) ;
      gam_dd.set(3,3).import( gam_dd_in.set(3,3) ) ;
      gam_dd.std_spectral_base() ;

      Metric gamma(gam_dd) ;   // Set up the 3-metric 

      k_dd.set(1,1).import( k_dd_in.set(1,1) ) ;
      k_dd.set(1,2).import( k_dd_in.set(1,2) ) ;
      k_dd.set(1,3).import( k_dd_in.set(1,3) ) ;
      k_dd.set(2,2).import( k_dd_in.set(2,2) ) ;
      k_dd.set(2,3).import( k_dd_in.set(2,3) ) ;
      k_dd.set(3,3).import( k_dd_in.set(3,3) ) ;
      k_dd.std_spectral_base() ;

      k_dd_in.inc_dzpuis(2) ; //Increase the dzpuis of k_dd_in back to two

      // End importing data


      // Call the AH finder (return the 2-surface h & expansion function)

      Valeur h(g_angu) ;  // 2-surface of the apparent horizon
      h.annule_hard() ;
      Scalar exp_fcn(map_2) ; // expansion function


      cout << " AH flag = " 
	   << ah_finder(gamma, k_dd, h, exp_fcn, aa, bb, cc, verbose, 
			print, tol, tol_exp, it_max, it_relax, relax_fac) << endl ;


      // Test and analysis.....

      cout << "########################" << endl ;
      cout << "Done with the AH finder" << endl ;
      cout << "########################" << endl ;
      cout << " " << endl ;
      cout << "Print the 2-surface h(theta,phi) of the apparent horizon" << endl ;
      cout << h(0) << endl ;

      cout << "########################" << endl ;
      cout << " Print (h_analytic - h) / h_analytic " << endl ;
      cout <<  ( h_correct(0) - h(0) ) / h_correct(0) << endl ;


      exp_fcn.std_spectral_base() ;

      Valeur exp_AH(g_angu) ;   // expansion function evaluated on the apparent 
                                 // horizon (which should be zero)
      exp_AH.annule_hard() ;

    for (int l=0; l<nz; l++) {
      for (int k=0; k<np; k++) {
	for (int j=0; j<nt; j++) {

	  exp_AH.set(l,k,j,0) = exp_fcn.val_point(h(l,k,j,0),(+theta)(l,k,j,0)
						     ,(+phi)(l,k,j,0))  ;  
	}
      }
    }

    cout << "##############################################" << endl ;
    cout << "Test: evaluate the expansion function on the apparent horizon " << endl ;
    cout << "   " << endl ; 

    cout << exp_AH(0) << endl ;

    des_profile(exp_fcn, orig_lim_2, 2., 0., 0.) ;


} // End main