File: test_roche.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (630 lines) | stat: -rw-r--r-- 19,877 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
 * Test program for solving Roche-like binaries
 * Fixing the orbital separation and the central value of the star
 */

/*
 *   Copyright (c) 1999-2001 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char test_roche_C[] = "$Header: /cvsroot/Lorene/Codes/Bin_star/test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $" ;

/*
 * $Id: test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
 * $Log: test_roche.C,v $
 * Revision 1.3  2014/10/06 15:09:43  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2003/01/09 11:07:49  j_novak
 * headcpp.h is now compliant with C++ norm.
 * The include files have been ordered, as well as the local_settings_linux
 *
 * Revision 1.1.1.1  2001/11/20 15:19:31  e_gourgoulhon
 * LORENE
 *
 * Revision 1.1  1999/12/24  11:08:16  keisuke
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Bin_star/test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
 *
 */

// headers C
#include <cstdlib>
#include <cmath>

// headers Lorene
#include "type_parite.h"
#include "cmp.h"
#include "utilitaires.h"
#include "graphique.h"
#include "param.h"

// Local prototypes:
Cmp eos_local(const Cmp& ent, int nzet, double n_index) ;
double funct_zero_ent(double r, const Param& par) ;

//**********************************************************************

void main(){
    
    // Identification of all the subroutines called by the code : 
    
    system("ident test_roche > identif_roche.d") ; 

    //-----------------------------------------------------------------------
    //			Input from file "part.d"
    //-----------------------------------------------------------------------
    
    int type_t, type_p, nt, np, nz, l;
    char blabla[80];
    double n_index, R_sep, p_ratio ;

    //----------------------------------------------------
    //             Declear the polytropic index
    //----------------------------------------------------
    cout << "Input the polytropic index : " ;
    cin >> n_index ;
    cout << "Input the orbital separation : " ;
    cin >> R_sep ;
    cout << "Input the ratio M_1/M_2 : " ;
    cin >> p_ratio ;

    ifstream fich("part.d") ;
    fich >> nt; fich.getline(blabla, 80);
    fich >> np; fich.getline(blabla, 80);
    fich >> nz; fich.getline(blabla, 80);

    cout << "nb de points en phi : np = " << np << endl;
    cout << "nb de points en theta : nt = " << nt << endl;
    cout << "nb de zones : nz = " << nz << endl;

    // initialisation des tableaux decrivant chaque zone 

    int* nr = new int[nz];
    int* nt_tab = new int[nz];
    int* np_tab = new int[nz];
    double* bornes = new double[nz+1];
    int* type_r = new int[nz];
     
    fich >> bornes[nz] ; fich.getline(blabla, 80) ;
    for (l=0; l<nz; l++) {
	fich >> nr[l]; 
	fich >> bornes[l]; 
	fich >> type_r[l]; fich.getline(blabla, 80);
	np_tab[l] = np ; 
	nt_tab[l] = nt ; 
    }
    if (type_r[nz-1]==UNSURR) bornes[nz] = 1./bornes[nz] ;

    fich.close();
   

    //-----------------------------------------------------------------------
    //		Construction of a multi-grid
    //-----------------------------------------------------------------------
    
    type_t = SYM ; 
    type_p = NONSYM ; 
    
    Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;

    cout << endl << "Grid mg : " << mg << endl ; 
    
    //-----------------------------------------------------------------------
    //		Construction of a mapping
    //-----------------------------------------------------------------------
    
    Map_af mp(mg, bornes) ;
    cout << "Mapping mp : " << mp << endl ; 

    //-----------------------------------------------------------------------
    //		Construction of a Cmp
    //-----------------------------------------------------------------------

    //----------------------
    // Spherical Star
    //----------------------
    Cmp rho(mp) ; 

    // Initial density profile
    //-------------------------
    rho = 1  ;		        // rho = 1 in internal domains
    rho.annule(nz-1) ;		// rho = 0 in external domain

    rho.set_dzpuis(4) ; 
    rho.std_base_scal() ; // Sets the standard basis for spectral expansions

    Cmp pot_star(mp) ;
    Cmp rho_prev_star(mp) ;

    Cmp ent_star(mp) ; 
    double ent_star_c = 1 ; 	// central value of enthalpy
    double ent_star_s = 0 ; 	// surface value of enthalpy

    int nr_star = mg.get_nr(nz-2) ; 

    do {

      // Solving the Poisson equation
      //------------------------------
      pot_star = - rho.poisson() ;

      // Obtaining "lambda" in order to rescale the mapping
      //----------------------------------------------------
      double pot_star_c = pot_star(0,0,0,0) ;
      double pot_star_s = pot_star(nz-2,0,0,nr_star-1) ;

      double lambda2_star = (ent_star_s - ent_star_c) /
	(pot_star_s - pot_star_c) ; 
      cout << "lambda2_star : " << lambda2_star << endl ; 

      // New potential after rescaling
      //-------------------------------
      pot_star = lambda2_star * pot_star ; 
      pot_star_c *= lambda2_star ; 

      // First integral of motion
      // -------------------------
      ent_star = ent_star_c + pot_star - pot_star_c ;
      // enthalpy is just the same as the Lane-Emden function Theta

      // Rescale of the mapping
      //------------------------
      mp.homothetie( sqrt(lambda2_star) ) ; 

      // EOS : rho = rho(H) 
      //--------------------
      rho_prev_star = rho ;
      rho = pow(abs(ent_star), n_index) ; 

      rho.annule(nz-1) ;
      rho.set_dzpuis(4) ;
      rho.std_base_scal() ;

      cout << max(abs(rho - rho_prev_star)) << endl;
      cout << "Maximum difference between rho and rho_prev : "
	   << max(diffrel(rho, rho_prev_star)) << endl ;

    } while(max(diffrel(rho, rho_prev_star)) > 1.e-6) ;

    arrete() ;

    // Mass of the star
    //------------------
    double mass = rho.integrale() ; 

    //---------------
    // Binary
    //---------------
    const Coord& r = mp.r ; 
    const Coord& x = mp.x ; 
    const Coord& y = mp.y ;
    const Coord& z = mp.z ;
    const Coord& sint = mp.sint ; 

    Cmp pot(mp) ;
    Cmp pot2(mp) ;
    Cmp pot3(mp) ;
    Cmp disp(mp) ;
    Cmp rho_pot3(mp) ;
    Cmp rho_disp(mp) ;
    Cmp rho_prev(mp) ;
    Cmp rot(mp) ;

    Cmp ent(mp) ;
    double ent_c = 1 ;
    double ent_s = 0 ;

    double cc ;
    double cc_prev ;
    double rel_cc ;
    cc = 0 ;

    cout << "mass = " << mass << endl ;
    double mass_prev ;
    double rel_mass ;

    double omega2 ;
    double omega2_prev ;
    double rel_omega ;
    omega2 = mass * (1 + p_ratio) / (M_PI * p_ratio * R_sep * R_sep * R_sep) ;
    cout << "omega^2 = " << omega2 << endl ;

    double r_x ;
    int nr_s = mg.get_nr(nz-2) ; 

      arrete() ;

    do {

      // Solving the Poisson equation
      //------------------------------
      pot = - rho.poisson() ;

      // Angular velocity
      //------------------
      omega2_prev = omega2 ;
      pot3 = (R_sep - x) / pow((R_sep-x) * (R_sep-x) + y*y + z*z, 1.5) ;
      disp = x ;

      rho_pot3 = rho * pot3 ;
      rho_pot3.annule(nz-1) ;
      rho_pot3.set_dzpuis(4) ;
      rho_pot3.std_base_scal() ;

      rho_disp = rho * disp ;
      rho_disp.annule(nz-1) ;
      rho_disp.set_dzpuis(4) ;
      rho_disp.std_base_scal() ;

      double integ1 = rho_pot3.integrale() ;
      double integ2 = rho_disp.integrale() ;

      //      cout << "Integrales : " << endl
      //	   << integ1 << endl << integ2 << endl ;

      omega2 = (1/(p_ratio * M_PI)) * integ1 /
	(R_sep/(1+p_ratio) - integ2 / mass) ;

      cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;

      rel_omega = fabs(1. - omega2_prev / omega2) ;
      cout << "Relative error in Omega^2 : " << rel_omega << endl ;

      // Obtaining "lambda" in order to rescale the mapping
      //----------------------------------------------------
      double pot_c = pot(0,0,0,0) ;
      r_x = mp.val_r(nz-2,1.,M_PI/2,0) ;
      cout << "Radius x : " << r_x << endl ;
      double pot_sx = pot.val_point(r_x,M_PI/2,0) ;
      cout << pot_c << endl << pot_sx << endl ;

      double lambda2 = (ent_c - ent_s +
			0.25 * mass *
			(1/(R_sep - r_x) - 1/R_sep) / (p_ratio * M_PI) +
			0.125 * omega2 *
			(-2. * R_sep * r_x / (1+p_ratio) + r_x * r_x)) /
	(pot_c - pot_sx) ;

      cout << "lambda2 : " << lambda2 << endl ;

      // Integration constant
      //----------------------
      cc_prev = cc ;
      cc = ent_c - pot_c - 0.25 * mass / (p_ratio * M_PI * R_sep)
	-0.125 * omega2 * R_sep * R_sep / ((1+p_ratio) * (1+p_ratio)) ;
      cout << "Integration constant : " << cc << endl ;

      rel_cc = fabs(1. - cc_prev / cc) ;
      cout << "Relative error in cc : " << rel_cc << endl ;

      // New potential after rescaling
      //-------------------------------
      pot = lambda2 * pot ;
      pot_c = lambda2 * pot_c ;
      pot_sx = lambda2 * pot_sx ;

      // First integration of motion
      //-----------------------------
      rot = 0.125 * omega2 * (- 2*R_sep*x/(1+p_ratio) + x*x + y*y) ;
      rot.annule(nz-1) ;
      pot2 = 1./pow( (R_sep - x) * (R_sep - x) + y*y + z*z, 0.5) - 1/R_sep ;
      //      pot2.set_dzpuis(4) ;
      //      pot2.std_base_scal() ;

      ent = ent_c - pot_c + pot +
	0.25 * mass * pot2 / (p_ratio * M_PI) + rot ;
      ent.annule(nz-1) ;
      //      ent.set_dzpuis(4) ;
      //      ent.std_base_scal() ;


      // Rescaling of the map
      //----------------------
      mp.homothetie( sqrt(lambda2) ) ;

      rho_prev = rho ;

      // EOS : rho = rho(H)
      //--------------------
      rho = eos_local(ent, nz-1, n_index) ;

      rho.set_dzpuis(4) ;
      rho.std_base_scal() ;

      cout << max(abs(rho - rho_prev)) << endl ;

      // Mass of the star
      //------------------
      mass_prev = mass ;
      mass = rho.integrale() ;
      cout << "Mass/rho_c : " << mass << endl ;

      rel_mass = fabs(1. - mass_prev/mass) ;
      cout << "Relative error in Mass : " << rel_mass << endl ;

      cout << "Maximum difference between rho and rho_prev : "
	   << max(diffrel(rho, rho_prev)) << endl ;

    } while(max(diffrel(rho, rho_prev)) > 1.e-4) ;

    cout << "Coef of rho : " << endl ; 
    rho.affiche_seuil(cout) ; 
    
    cout << "Coef of pot : " << endl ; 
    pot.affiche_seuil(cout) ; 

    arrete() ;
    cout << "Value of pot at the origin : " << pot(0,0,0,0) << endl ;
    cout << "Value of pot at the surface (r=ray) : "
         << pot(nz-1,0,0,0) << endl ;
    cout << "Value of pot at the surface (r=ray) : "
         << pot(nz-2,0,0,nr_s-1) << endl ; 
    //    arrete() ; 

    // Checking whether or not the potential satisfies the Poisson equation
    //----------------------------------------------------------------------
    Cmp lap = - pot.laplacien() ; 

    cout << "max( |lap(pot) - rho| ) " << max(abs(lap - rho)) << endl ; 
    cout << "relative error : " << diffrel(lap, rho) << endl ;

    // Searching the radius to the x-axis direction
    //----------------------------------------------
    Param par_funct_zero_x ;
    par_funct_zero_x.add_cmp(ent) ; 
    double phi_search_x = 0 ;
    double theta_search_x = M_PI/2 ;
    par_funct_zero_x.add_double(theta_search_x, 0) ;
    par_funct_zero_x.add_double(phi_search_x, 1) ;

    double r_min_search_x = 0 ;
    double r_max_search_x = r_x ;
    double precis_x = 1e-10 ;
    int nitermax_x = 100 ;
    int niter_x ;

    double radius_x = zerosec(funct_zero_ent, par_funct_zero_x, 
			 r_min_search_x, r_max_search_x, precis_x,
			 nitermax_x, niter_x) ;

    cout << "Radius of the star in the x-axis direction : " << radius_x
	 << endl ;

    // Searching the radius opposite to the x-axis direction
    //-------------------------------------------------------
    Param par_funct_zero_xopp ;
    par_funct_zero_xopp.add_cmp(ent) ; 
    double phi_search_xopp = M_PI ;
    double theta_search_xopp = M_PI/2 ;
    par_funct_zero_xopp.add_double(theta_search_xopp, 0) ;
    par_funct_zero_xopp.add_double(phi_search_xopp, 1) ;

    double r_min_search_xopp = 0 ;
    double r_max_search_xopp = r_x ;
    double precis_xopp = 1e-10 ;
    int nitermax_xopp = 100 ;
    int niter_xopp ;

    double radius_xopp = zerosec(funct_zero_ent, par_funct_zero_xopp, 
			 r_min_search_xopp, r_max_search_xopp, precis_xopp,
			 nitermax_xopp, niter_xopp) ;

    cout << "Radius of the star opposite to the x-axis direction : "
	 << radius_xopp << endl ;

    // Searching the radius to the y-axis direction
    //----------------------------------------------
    Param par_funct_zero_y ;
    par_funct_zero_y.add_cmp(ent) ; 
    double phi_search_y = M_PI/2 ;
    double theta_search_y = M_PI/2 ;
    par_funct_zero_y.add_double(theta_search_y, 0) ;
    par_funct_zero_y.add_double(phi_search_y, 1) ;

    double r_min_search_y = 0 ;
    double r_max_search_y = r_x ;
    double precis_y = 1e-10 ;
    int nitermax_y = 100 ;
    int niter_y ;

    double radius_y = zerosec(funct_zero_ent, par_funct_zero_y, 
			 r_min_search_y, r_max_search_y, precis_y,
			 nitermax_y, niter_y) ;

    cout << "Radius of the star in the y-axis direction : " << radius_y
	 << endl ;

    // Searching the radius to the north pole
    //----------------------------------------
    Param par_funct_zero_z ;
    par_funct_zero_z.add_cmp(ent) ; 
    double phi_search_z = 0 ;
    double theta_search_z = 0 ;
    par_funct_zero_z.add_double(theta_search_z, 0) ;
    par_funct_zero_z.add_double(phi_search_z, 1) ;

    double r_min_search_z = 0 ;
    double r_max_search_z = r_x ;
    double precis_z = 1e-10 ;
    int nitermax_z = 100 ;
    int niter_z ;

    double radius_z = zerosec(funct_zero_ent, par_funct_zero_z, 
			 r_min_search_z, r_max_search_z, precis_z,
			 nitermax_z, niter_z) ;

    cout << "Radius of the star in the z-axis direction : " << radius_z
	 << endl ;

    // Radius of the star
    //--------------------
    double ray = mp.val_r(nz-2,1.,M_PI/2,0) ;
    cout << "Radius of the star in the x-axis direction : " << ray << endl ;

    cout << "The ratios of the axes : " << endl
	 << "a_2/a_1 : " << radius_y/radius_x << endl
	 << "a_3/a_1 : " << radius_z/radius_x << endl ;

    // Angular velocity
    //------------------
    double omega = sqrt(omega2) ;

    cout << "Angular velocity of the star Omega/(pi G rho_c)^{1/2} : "
	 << omega << endl ;
    cout << "Angular velocity Omega^2/(pi G rho_c) : " << omega2 << endl ;

    arrete() ;

    // Total energy of the binary system
    //-----------------------------------

    // Internal energy
    Cmp rho_n(mp) ;

    rho_n = pow(abs(rho), 1 + 1/n_index) ;
    rho_n.annule(nz-1) ;
    rho_n.set_dzpuis(4) ;
    rho_n.std_base_scal() ;

    double energy_internal = 4. * M_PI *
      (1 / (1 + n_index)) * rho_n.integrale() * ray / (mass * mass) ;
    cout << "Internal energy of the Roche binary system : E_int/(GM^2/ray) : "
	 << n_index * energy_internal << endl ;

    // Self-gravity energy
    Cmp rho_pot(mp) ;
    rho_pot = rho * pot ;
    rho_pot.annule(nz-1) ;
    rho_pot.set_dzpuis(4) ;
    rho_pot.std_base_scal() ;
    double energy_selfgrav = -2. * M_PI * rho_pot.integrale() * ray /
      (mass * mass) ;
    cout <<
      "Self-gravity energy of the Roche binary system : E_self/(GM^2/ray) : "
	 << energy_selfgrav << endl ;

    // Interaction energy
    Cmp pot21(mp) ;
    Cmp rho_pot21(mp) ;
    pot21 = 1/pow((R_sep-x) * (R_sep-x) + y*y + z*z, 0.5) ;
    rho_pot21 = rho * pot21 ;
    rho_pot21.annule(nz-1) ;
    rho_pot21.set_dzpuis(4) ;
    rho_pot21.std_base_scal() ;
    double energy_interact = -0.5 * rho_pot21.integrale() * ray /
      (mass * p_ratio) ;
    cout <<
      "Interaction energy of the Roche binary system : E_ext/(GM^2/ray) : "
	 << energy_interact << endl ;

    // Kinetic energy
    Cmp rr(mp) ;
    Cmp rho_quad(mp) ;
    rr = r * r * sint * sint - 2.*R_sep*x/(1+p_ratio) ;
    rho_quad = rho * rr ;
    rho_quad.annule(nz-1) ;
    rho_quad.set_dzpuis(4) ;
    rho_quad.std_base_scal() ;
    double energy_kinetic = 0.5 * M_PI * omega2 *
      ( pow(R_sep/(1+p_ratio), 2) + rho_quad.integrale() / mass ) * ray/mass ;
    cout << "Kinetic energy of the Roche binary system : E_kinet/(GM^2/ray) : "
	 << energy_kinetic << endl ;

    double energy_total = n_index * energy_internal + energy_selfgrav
      + energy_kinetic + energy_interact ;

    cout << "Total energy of the Roche binary system : E/(GM^2/ray) : "
	 << energy_total << endl ;

    // Angular momentum
    //------------------
    double angmom = sqrt(M_PI) * omega *
      ( mass * pow(R_sep/(1+p_ratio), 2) + rho_quad.integrale() ) /
      sqrt( mass * mass * mass * ray ) ;

    cout <<
      "Angular momentum of the Roche binary system : J/(GM^3 ray)^{1/2} : "
	 << angmom << endl ;

    // Virial relation
    //-----------------
    double virial = 3. * energy_internal + energy_selfgrav
      + 2. * energy_kinetic + energy_interact ;
    cout << "Virial relation : " << virial << endl ;

    //------------------------------------------
    //          Plot the figures
    //------------------------------------------
    double rmax ;
    cout << "r_max ?" << endl ;
    cin >> rmax ;

    des_profile(rho, 0., rmax, M_PI/2, 0., "rho/rho_c","rho (x direction)") ;
    des_profile(rho, 0.,rmax,M_PI/2,M_PI/2,"rho/rho_c","rho (y direction)") ;
    des_profile(rho, 0., rmax, 0., 0., "rho/rho_c", "rho (z direction)") ;

    des_profile(ent,0.,rmax,M_PI/2,0.,"enthalpy","enthalpy (x direction)") ;
    des_profile(ent,0.,rmax,M_PI/2,M_PI/2,"enthalpy",
		"enthalpy (y direction)") ;
    des_profile(ent,0.,rmax,0.,0.,"enthalpy","enthalpy (z direction)") ;

    /*
    des_profile(rho_n,0.,rmax,M_PI/2,0.,"rho_n","rho_n (x direction)") ;
    des_profile(rho_n,0.,rmax,M_PI/2,M_PI/2,"rho_n","rho_n (y direction)") ;
    des_profile(rho_n,0.,rmax,0.,0.,"rho_n","rho_n (z direction)") ;

    des_profile(rho_pot,0.,rmax,M_PI/2,0.,"rho_pot","rho_pot (x direction)") ;
    des_profile(rho_pot,0.,rmax,M_PI/2,M_PI/2,"rho_pot",
		"rho_pot (y direction)") ;
    des_profile(rho_pot,0.,rmax,0.,0.,"rho_pot","rho_pot (z direction)") ;

    des_profile(rho_pot21,0.,rmax,M_PI/2,0.,"rho_pot21",
		"rho_pot21 (x direction)") ;
    des_profile(rho_pot21,0.,rmax,M_PI/2,M_PI/2,"rho_pot21",
		"rho_pot21 (y direction)") ;
    des_profile(rho_pot21,0.,rmax,0.,0.,"rho_pot21",
		"rho_pot21 (z direction)") ;

    des_profile(rho_quad,0.,rmax,M_PI/2,0.,"rho_quad",
		"rho_quad (x direction)") ;
    des_profile(rho_quad,0.,rmax,M_PI/2,M_PI/2,"rho_quad",
		"rho_quad (y direction)") ;
    des_profile(rho_quad,0.,rmax,0.,0.,"rho_quad","rho_quad (z direction)") ;
    */

    des_coupe_x(rho, 0., -rmax, rmax, -rmax, rmax, "rho (y-z plane)", &ent) ;
    des_coupe_y(rho, 0., -rmax, rmax, -rmax, rmax, "rho (z-x plane)", &ent) ;
    des_coupe_z(rho, 0., -rmax, rmax, -rmax, rmax, "rho (x-y plane)", &ent) ;

    des_coef_xi(rho.va, 0, 0, 0, 1.e-14, "log|c_i|", "domain no. 0") ;
    des_coef_theta(rho.va, 0, 0, 0) ;
    des_coef_phi(rho.va, 0, 0, 0) ;

    des_coef_xi(rho.va, 1, 0, 0, 1.e-14, "log|c_i|", "domain no. 1") ;
    des_coef_theta(rho.va, 0, 0, 0) ;
    des_coef_phi(rho.va, 0, 0, 0) ;

    exit(-1) ; 
        
}