1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
/*
* Test program for solving Roche-like binaries
* Fixing the orbital separation and the central value of the star
*/
/*
* Copyright (c) 1999-2001 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char test_roche_C[] = "$Header: /cvsroot/Lorene/Codes/Bin_star/test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $" ;
/*
* $Id: test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
* $Log: test_roche.C,v $
* Revision 1.3 2014/10/06 15:09:43 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2003/01/09 11:07:49 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1.1.1 2001/11/20 15:19:31 e_gourgoulhon
* LORENE
*
* Revision 1.1 1999/12/24 11:08:16 keisuke
* Initial revision
*
*
* $Header: /cvsroot/Lorene/Codes/Bin_star/test_roche.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
#include <cmath>
// headers Lorene
#include "type_parite.h"
#include "cmp.h"
#include "utilitaires.h"
#include "graphique.h"
#include "param.h"
// Local prototypes:
Cmp eos_local(const Cmp& ent, int nzet, double n_index) ;
double funct_zero_ent(double r, const Param& par) ;
//**********************************************************************
void main(){
// Identification of all the subroutines called by the code :
system("ident test_roche > identif_roche.d") ;
//-----------------------------------------------------------------------
// Input from file "part.d"
//-----------------------------------------------------------------------
int type_t, type_p, nt, np, nz, l;
char blabla[80];
double n_index, R_sep, p_ratio ;
//----------------------------------------------------
// Declear the polytropic index
//----------------------------------------------------
cout << "Input the polytropic index : " ;
cin >> n_index ;
cout << "Input the orbital separation : " ;
cin >> R_sep ;
cout << "Input the ratio M_1/M_2 : " ;
cin >> p_ratio ;
ifstream fich("part.d") ;
fich >> nt; fich.getline(blabla, 80);
fich >> np; fich.getline(blabla, 80);
fich >> nz; fich.getline(blabla, 80);
cout << "nb de points en phi : np = " << np << endl;
cout << "nb de points en theta : nt = " << nt << endl;
cout << "nb de zones : nz = " << nz << endl;
// initialisation des tableaux decrivant chaque zone
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
int* type_r = new int[nz];
fich >> bornes[nz] ; fich.getline(blabla, 80) ;
for (l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l];
fich >> type_r[l]; fich.getline(blabla, 80);
np_tab[l] = np ;
nt_tab[l] = nt ;
}
if (type_r[nz-1]==UNSURR) bornes[nz] = 1./bornes[nz] ;
fich.close();
//-----------------------------------------------------------------------
// Construction of a multi-grid
//-----------------------------------------------------------------------
type_t = SYM ;
type_p = NONSYM ;
Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
cout << endl << "Grid mg : " << mg << endl ;
//-----------------------------------------------------------------------
// Construction of a mapping
//-----------------------------------------------------------------------
Map_af mp(mg, bornes) ;
cout << "Mapping mp : " << mp << endl ;
//-----------------------------------------------------------------------
// Construction of a Cmp
//-----------------------------------------------------------------------
//----------------------
// Spherical Star
//----------------------
Cmp rho(mp) ;
// Initial density profile
//-------------------------
rho = 1 ; // rho = 1 in internal domains
rho.annule(nz-1) ; // rho = 0 in external domain
rho.set_dzpuis(4) ;
rho.std_base_scal() ; // Sets the standard basis for spectral expansions
Cmp pot_star(mp) ;
Cmp rho_prev_star(mp) ;
Cmp ent_star(mp) ;
double ent_star_c = 1 ; // central value of enthalpy
double ent_star_s = 0 ; // surface value of enthalpy
int nr_star = mg.get_nr(nz-2) ;
do {
// Solving the Poisson equation
//------------------------------
pot_star = - rho.poisson() ;
// Obtaining "lambda" in order to rescale the mapping
//----------------------------------------------------
double pot_star_c = pot_star(0,0,0,0) ;
double pot_star_s = pot_star(nz-2,0,0,nr_star-1) ;
double lambda2_star = (ent_star_s - ent_star_c) /
(pot_star_s - pot_star_c) ;
cout << "lambda2_star : " << lambda2_star << endl ;
// New potential after rescaling
//-------------------------------
pot_star = lambda2_star * pot_star ;
pot_star_c *= lambda2_star ;
// First integral of motion
// -------------------------
ent_star = ent_star_c + pot_star - pot_star_c ;
// enthalpy is just the same as the Lane-Emden function Theta
// Rescale of the mapping
//------------------------
mp.homothetie( sqrt(lambda2_star) ) ;
// EOS : rho = rho(H)
//--------------------
rho_prev_star = rho ;
rho = pow(abs(ent_star), n_index) ;
rho.annule(nz-1) ;
rho.set_dzpuis(4) ;
rho.std_base_scal() ;
cout << max(abs(rho - rho_prev_star)) << endl;
cout << "Maximum difference between rho and rho_prev : "
<< max(diffrel(rho, rho_prev_star)) << endl ;
} while(max(diffrel(rho, rho_prev_star)) > 1.e-6) ;
arrete() ;
// Mass of the star
//------------------
double mass = rho.integrale() ;
//---------------
// Binary
//---------------
const Coord& r = mp.r ;
const Coord& x = mp.x ;
const Coord& y = mp.y ;
const Coord& z = mp.z ;
const Coord& sint = mp.sint ;
Cmp pot(mp) ;
Cmp pot2(mp) ;
Cmp pot3(mp) ;
Cmp disp(mp) ;
Cmp rho_pot3(mp) ;
Cmp rho_disp(mp) ;
Cmp rho_prev(mp) ;
Cmp rot(mp) ;
Cmp ent(mp) ;
double ent_c = 1 ;
double ent_s = 0 ;
double cc ;
double cc_prev ;
double rel_cc ;
cc = 0 ;
cout << "mass = " << mass << endl ;
double mass_prev ;
double rel_mass ;
double omega2 ;
double omega2_prev ;
double rel_omega ;
omega2 = mass * (1 + p_ratio) / (M_PI * p_ratio * R_sep * R_sep * R_sep) ;
cout << "omega^2 = " << omega2 << endl ;
double r_x ;
int nr_s = mg.get_nr(nz-2) ;
arrete() ;
do {
// Solving the Poisson equation
//------------------------------
pot = - rho.poisson() ;
// Angular velocity
//------------------
omega2_prev = omega2 ;
pot3 = (R_sep - x) / pow((R_sep-x) * (R_sep-x) + y*y + z*z, 1.5) ;
disp = x ;
rho_pot3 = rho * pot3 ;
rho_pot3.annule(nz-1) ;
rho_pot3.set_dzpuis(4) ;
rho_pot3.std_base_scal() ;
rho_disp = rho * disp ;
rho_disp.annule(nz-1) ;
rho_disp.set_dzpuis(4) ;
rho_disp.std_base_scal() ;
double integ1 = rho_pot3.integrale() ;
double integ2 = rho_disp.integrale() ;
// cout << "Integrales : " << endl
// << integ1 << endl << integ2 << endl ;
omega2 = (1/(p_ratio * M_PI)) * integ1 /
(R_sep/(1+p_ratio) - integ2 / mass) ;
cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;
rel_omega = fabs(1. - omega2_prev / omega2) ;
cout << "Relative error in Omega^2 : " << rel_omega << endl ;
// Obtaining "lambda" in order to rescale the mapping
//----------------------------------------------------
double pot_c = pot(0,0,0,0) ;
r_x = mp.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius x : " << r_x << endl ;
double pot_sx = pot.val_point(r_x,M_PI/2,0) ;
cout << pot_c << endl << pot_sx << endl ;
double lambda2 = (ent_c - ent_s +
0.25 * mass *
(1/(R_sep - r_x) - 1/R_sep) / (p_ratio * M_PI) +
0.125 * omega2 *
(-2. * R_sep * r_x / (1+p_ratio) + r_x * r_x)) /
(pot_c - pot_sx) ;
cout << "lambda2 : " << lambda2 << endl ;
// Integration constant
//----------------------
cc_prev = cc ;
cc = ent_c - pot_c - 0.25 * mass / (p_ratio * M_PI * R_sep)
-0.125 * omega2 * R_sep * R_sep / ((1+p_ratio) * (1+p_ratio)) ;
cout << "Integration constant : " << cc << endl ;
rel_cc = fabs(1. - cc_prev / cc) ;
cout << "Relative error in cc : " << rel_cc << endl ;
// New potential after rescaling
//-------------------------------
pot = lambda2 * pot ;
pot_c = lambda2 * pot_c ;
pot_sx = lambda2 * pot_sx ;
// First integration of motion
//-----------------------------
rot = 0.125 * omega2 * (- 2*R_sep*x/(1+p_ratio) + x*x + y*y) ;
rot.annule(nz-1) ;
pot2 = 1./pow( (R_sep - x) * (R_sep - x) + y*y + z*z, 0.5) - 1/R_sep ;
// pot2.set_dzpuis(4) ;
// pot2.std_base_scal() ;
ent = ent_c - pot_c + pot +
0.25 * mass * pot2 / (p_ratio * M_PI) + rot ;
ent.annule(nz-1) ;
// ent.set_dzpuis(4) ;
// ent.std_base_scal() ;
// Rescaling of the map
//----------------------
mp.homothetie( sqrt(lambda2) ) ;
rho_prev = rho ;
// EOS : rho = rho(H)
//--------------------
rho = eos_local(ent, nz-1, n_index) ;
rho.set_dzpuis(4) ;
rho.std_base_scal() ;
cout << max(abs(rho - rho_prev)) << endl ;
// Mass of the star
//------------------
mass_prev = mass ;
mass = rho.integrale() ;
cout << "Mass/rho_c : " << mass << endl ;
rel_mass = fabs(1. - mass_prev/mass) ;
cout << "Relative error in Mass : " << rel_mass << endl ;
cout << "Maximum difference between rho and rho_prev : "
<< max(diffrel(rho, rho_prev)) << endl ;
} while(max(diffrel(rho, rho_prev)) > 1.e-4) ;
cout << "Coef of rho : " << endl ;
rho.affiche_seuil(cout) ;
cout << "Coef of pot : " << endl ;
pot.affiche_seuil(cout) ;
arrete() ;
cout << "Value of pot at the origin : " << pot(0,0,0,0) << endl ;
cout << "Value of pot at the surface (r=ray) : "
<< pot(nz-1,0,0,0) << endl ;
cout << "Value of pot at the surface (r=ray) : "
<< pot(nz-2,0,0,nr_s-1) << endl ;
// arrete() ;
// Checking whether or not the potential satisfies the Poisson equation
//----------------------------------------------------------------------
Cmp lap = - pot.laplacien() ;
cout << "max( |lap(pot) - rho| ) " << max(abs(lap - rho)) << endl ;
cout << "relative error : " << diffrel(lap, rho) << endl ;
// Searching the radius to the x-axis direction
//----------------------------------------------
Param par_funct_zero_x ;
par_funct_zero_x.add_cmp(ent) ;
double phi_search_x = 0 ;
double theta_search_x = M_PI/2 ;
par_funct_zero_x.add_double(theta_search_x, 0) ;
par_funct_zero_x.add_double(phi_search_x, 1) ;
double r_min_search_x = 0 ;
double r_max_search_x = r_x ;
double precis_x = 1e-10 ;
int nitermax_x = 100 ;
int niter_x ;
double radius_x = zerosec(funct_zero_ent, par_funct_zero_x,
r_min_search_x, r_max_search_x, precis_x,
nitermax_x, niter_x) ;
cout << "Radius of the star in the x-axis direction : " << radius_x
<< endl ;
// Searching the radius opposite to the x-axis direction
//-------------------------------------------------------
Param par_funct_zero_xopp ;
par_funct_zero_xopp.add_cmp(ent) ;
double phi_search_xopp = M_PI ;
double theta_search_xopp = M_PI/2 ;
par_funct_zero_xopp.add_double(theta_search_xopp, 0) ;
par_funct_zero_xopp.add_double(phi_search_xopp, 1) ;
double r_min_search_xopp = 0 ;
double r_max_search_xopp = r_x ;
double precis_xopp = 1e-10 ;
int nitermax_xopp = 100 ;
int niter_xopp ;
double radius_xopp = zerosec(funct_zero_ent, par_funct_zero_xopp,
r_min_search_xopp, r_max_search_xopp, precis_xopp,
nitermax_xopp, niter_xopp) ;
cout << "Radius of the star opposite to the x-axis direction : "
<< radius_xopp << endl ;
// Searching the radius to the y-axis direction
//----------------------------------------------
Param par_funct_zero_y ;
par_funct_zero_y.add_cmp(ent) ;
double phi_search_y = M_PI/2 ;
double theta_search_y = M_PI/2 ;
par_funct_zero_y.add_double(theta_search_y, 0) ;
par_funct_zero_y.add_double(phi_search_y, 1) ;
double r_min_search_y = 0 ;
double r_max_search_y = r_x ;
double precis_y = 1e-10 ;
int nitermax_y = 100 ;
int niter_y ;
double radius_y = zerosec(funct_zero_ent, par_funct_zero_y,
r_min_search_y, r_max_search_y, precis_y,
nitermax_y, niter_y) ;
cout << "Radius of the star in the y-axis direction : " << radius_y
<< endl ;
// Searching the radius to the north pole
//----------------------------------------
Param par_funct_zero_z ;
par_funct_zero_z.add_cmp(ent) ;
double phi_search_z = 0 ;
double theta_search_z = 0 ;
par_funct_zero_z.add_double(theta_search_z, 0) ;
par_funct_zero_z.add_double(phi_search_z, 1) ;
double r_min_search_z = 0 ;
double r_max_search_z = r_x ;
double precis_z = 1e-10 ;
int nitermax_z = 100 ;
int niter_z ;
double radius_z = zerosec(funct_zero_ent, par_funct_zero_z,
r_min_search_z, r_max_search_z, precis_z,
nitermax_z, niter_z) ;
cout << "Radius of the star in the z-axis direction : " << radius_z
<< endl ;
// Radius of the star
//--------------------
double ray = mp.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius of the star in the x-axis direction : " << ray << endl ;
cout << "The ratios of the axes : " << endl
<< "a_2/a_1 : " << radius_y/radius_x << endl
<< "a_3/a_1 : " << radius_z/radius_x << endl ;
// Angular velocity
//------------------
double omega = sqrt(omega2) ;
cout << "Angular velocity of the star Omega/(pi G rho_c)^{1/2} : "
<< omega << endl ;
cout << "Angular velocity Omega^2/(pi G rho_c) : " << omega2 << endl ;
arrete() ;
// Total energy of the binary system
//-----------------------------------
// Internal energy
Cmp rho_n(mp) ;
rho_n = pow(abs(rho), 1 + 1/n_index) ;
rho_n.annule(nz-1) ;
rho_n.set_dzpuis(4) ;
rho_n.std_base_scal() ;
double energy_internal = 4. * M_PI *
(1 / (1 + n_index)) * rho_n.integrale() * ray / (mass * mass) ;
cout << "Internal energy of the Roche binary system : E_int/(GM^2/ray) : "
<< n_index * energy_internal << endl ;
// Self-gravity energy
Cmp rho_pot(mp) ;
rho_pot = rho * pot ;
rho_pot.annule(nz-1) ;
rho_pot.set_dzpuis(4) ;
rho_pot.std_base_scal() ;
double energy_selfgrav = -2. * M_PI * rho_pot.integrale() * ray /
(mass * mass) ;
cout <<
"Self-gravity energy of the Roche binary system : E_self/(GM^2/ray) : "
<< energy_selfgrav << endl ;
// Interaction energy
Cmp pot21(mp) ;
Cmp rho_pot21(mp) ;
pot21 = 1/pow((R_sep-x) * (R_sep-x) + y*y + z*z, 0.5) ;
rho_pot21 = rho * pot21 ;
rho_pot21.annule(nz-1) ;
rho_pot21.set_dzpuis(4) ;
rho_pot21.std_base_scal() ;
double energy_interact = -0.5 * rho_pot21.integrale() * ray /
(mass * p_ratio) ;
cout <<
"Interaction energy of the Roche binary system : E_ext/(GM^2/ray) : "
<< energy_interact << endl ;
// Kinetic energy
Cmp rr(mp) ;
Cmp rho_quad(mp) ;
rr = r * r * sint * sint - 2.*R_sep*x/(1+p_ratio) ;
rho_quad = rho * rr ;
rho_quad.annule(nz-1) ;
rho_quad.set_dzpuis(4) ;
rho_quad.std_base_scal() ;
double energy_kinetic = 0.5 * M_PI * omega2 *
( pow(R_sep/(1+p_ratio), 2) + rho_quad.integrale() / mass ) * ray/mass ;
cout << "Kinetic energy of the Roche binary system : E_kinet/(GM^2/ray) : "
<< energy_kinetic << endl ;
double energy_total = n_index * energy_internal + energy_selfgrav
+ energy_kinetic + energy_interact ;
cout << "Total energy of the Roche binary system : E/(GM^2/ray) : "
<< energy_total << endl ;
// Angular momentum
//------------------
double angmom = sqrt(M_PI) * omega *
( mass * pow(R_sep/(1+p_ratio), 2) + rho_quad.integrale() ) /
sqrt( mass * mass * mass * ray ) ;
cout <<
"Angular momentum of the Roche binary system : J/(GM^3 ray)^{1/2} : "
<< angmom << endl ;
// Virial relation
//-----------------
double virial = 3. * energy_internal + energy_selfgrav
+ 2. * energy_kinetic + energy_interact ;
cout << "Virial relation : " << virial << endl ;
//------------------------------------------
// Plot the figures
//------------------------------------------
double rmax ;
cout << "r_max ?" << endl ;
cin >> rmax ;
des_profile(rho, 0., rmax, M_PI/2, 0., "rho/rho_c","rho (x direction)") ;
des_profile(rho, 0.,rmax,M_PI/2,M_PI/2,"rho/rho_c","rho (y direction)") ;
des_profile(rho, 0., rmax, 0., 0., "rho/rho_c", "rho (z direction)") ;
des_profile(ent,0.,rmax,M_PI/2,0.,"enthalpy","enthalpy (x direction)") ;
des_profile(ent,0.,rmax,M_PI/2,M_PI/2,"enthalpy",
"enthalpy (y direction)") ;
des_profile(ent,0.,rmax,0.,0.,"enthalpy","enthalpy (z direction)") ;
/*
des_profile(rho_n,0.,rmax,M_PI/2,0.,"rho_n","rho_n (x direction)") ;
des_profile(rho_n,0.,rmax,M_PI/2,M_PI/2,"rho_n","rho_n (y direction)") ;
des_profile(rho_n,0.,rmax,0.,0.,"rho_n","rho_n (z direction)") ;
des_profile(rho_pot,0.,rmax,M_PI/2,0.,"rho_pot","rho_pot (x direction)") ;
des_profile(rho_pot,0.,rmax,M_PI/2,M_PI/2,"rho_pot",
"rho_pot (y direction)") ;
des_profile(rho_pot,0.,rmax,0.,0.,"rho_pot","rho_pot (z direction)") ;
des_profile(rho_pot21,0.,rmax,M_PI/2,0.,"rho_pot21",
"rho_pot21 (x direction)") ;
des_profile(rho_pot21,0.,rmax,M_PI/2,M_PI/2,"rho_pot21",
"rho_pot21 (y direction)") ;
des_profile(rho_pot21,0.,rmax,0.,0.,"rho_pot21",
"rho_pot21 (z direction)") ;
des_profile(rho_quad,0.,rmax,M_PI/2,0.,"rho_quad",
"rho_quad (x direction)") ;
des_profile(rho_quad,0.,rmax,M_PI/2,M_PI/2,"rho_quad",
"rho_quad (y direction)") ;
des_profile(rho_quad,0.,rmax,0.,0.,"rho_quad","rho_quad (z direction)") ;
*/
des_coupe_x(rho, 0., -rmax, rmax, -rmax, rmax, "rho (y-z plane)", &ent) ;
des_coupe_y(rho, 0., -rmax, rmax, -rmax, rmax, "rho (z-x plane)", &ent) ;
des_coupe_z(rho, 0., -rmax, rmax, -rmax, rmax, "rho (x-y plane)", &ent) ;
des_coef_xi(rho.va, 0, 0, 0, 1.e-14, "log|c_i|", "domain no. 0") ;
des_coef_theta(rho.va, 0, 0, 0) ;
des_coef_phi(rho.va, 0, 0, 0) ;
des_coef_xi(rho.va, 1, 0, 0, 1.e-14, "log|c_i|", "domain no. 1") ;
des_coef_theta(rho.va, 0, 0, 0) ;
des_coef_phi(rho.va, 0, 0, 0) ;
exit(-1) ;
}
|