1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
/*
* Main code for time evolving Einstein equations
* in Dirac gauge.
*
*/
/*
* Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char einstein_C[] = "$Header: /cvsroot/Lorene/Codes/Einstein/einstein.C,v 1.16 2014/10/13 08:53:55 j_novak Exp $" ;
/*
* $Id: einstein.C,v 1.16 2014/10/13 08:53:55 j_novak Exp $
* $Log: einstein.C,v $
* Revision 1.16 2014/10/13 08:53:55 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.15 2014/10/06 15:09:44 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.14 2004/04/05 14:46:33 e_gourgoulhon
* The graphical functions are now declared in graphique.h and
* are included in Lorene's library.
*
* Revision 1.13 2004/04/05 07:00:49 e_gourgoulhon
* Corrected minor error in the computation of taa: ff --> tgam.
*
* Revision 1.12 2004/03/31 20:28:57 e_gourgoulhon
* Update to take into account the new prototypes of
* Evolution_std<TyT>::Evolution_std<TyT> and
* Evolution_std<TyT>::update.
* Test of shift equation.
*
* Revision 1.11 2004/03/11 12:09:32 e_gourgoulhon
* Use of new method Scalar::visu_section_anim to produce outputs for
* movies.
*
* Revision 1.10 2004/03/08 00:36:27 e_gourgoulhon
* Added output for OpenDX (visu_section).
* Initial amplitude = 1e-3.
*
* Revision 1.9 2004/03/06 21:16:38 e_gourgoulhon
* First version with all equations implemented, with full sources,
* including the time derivatives.
* The only missing part is the trace of h.
*
* Revision 1.8 2004/03/05 15:11:18 e_gourgoulhon
* Use of new method Scalar::smooth_decay on khi_jp1.
*
* Revision 1.7 2004/03/04 22:19:25 e_gourgoulhon
* All sources completed (except for the time derivatives and
* shift terms in the source for h).
*
* Revision 1.6 2004/03/04 16:25:56 e_gourgoulhon
* Still in progress...
*
* Revision 1.5 2004/03/03 11:35:25 e_gourgoulhon
* First version with Evolution_std's and d'Alembert.
*
* Revision 1.4 2004/03/02 14:54:17 e_gourgoulhon
* Started to encode source for h from new equations.
*
* Revision 1.3 2004/02/27 21:17:26 e_gourgoulhon
* Still in progress...
*
* Revision 1.2 2004/02/19 22:16:42 e_gourgoulhon
* Sources of equations for Q, N and beta completed.
*
* Revision 1.1 2004/02/18 19:16:28 e_gourgoulhon
* First version: c'est loin d'etre pret tout ca !!!
*
*
* $Header: /cvsroot/Lorene/Codes/Einstein/einstein.C,v 1.16 2014/10/13 08:53:55 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include <cstdlib>
#include <cmath>
#include <cstring>
// Lorene headers
#include "metric.h"
#include "evolution.h"
#include "param.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"
using namespace Lorene ;
int main() {
//======================================================================
// Parameters of the computation
//======================================================================
double pdt = 0.01 ;
int jmax = 1000 ;
int jstop = jmax ;
bool compute_source = true ;
double relativistic_init = 0. ; // 0 = flat space
double ampli_h_init = 0.001 ; // 0 = flat space
//======================================================================
// Construction and initialization of the various objects
//======================================================================
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 4 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 9 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = SYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified
// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
// --------------------------------------------------------------------------
// radial boundaries of each domain:
double r_limits[] = {0., 1., 2., 4., __infinity} ;
assert( nz == 4 ) ; // since the above array described only 3 domains
Map_af map(mgrid, r_limits) ; // Mapping construction
cout << map << endl ;
// Flat metric f
// -------------
const Metric_flat& ff = map.flat_met_spher() ;
// Triad orthonormal with respect to the flat metric f
// ----------------------------------------------------
const Base_vect_spher& otriad = map.get_bvect_spher() ;
// Set up of tensor h
// ------------------
Sym_tensor_trans hh_init(map, otriad, ff) ; // hh is a transverse tensor
// with respect to the flat metric
// thanks to Dirac gauge
// Test with the tensor h^{ij} = D^i D^j Phi with Lap(Phi) = 0
const Coord& x = map.x ;
const Coord& y = map.y ;
// const Coord& z = map.z ;
const Coord& r = map.r ;
//const Coord& cost = map.cost ;
//const Coord& sint = map.sint ;
//const Coord& cosp = map.cosp ;
// const Coord& sinp = map.sinp ;
Scalar khi_init(map) ;
khi_init = ampli_h_init * exp( - r*r ) * x*y ;
//khi_init = ampli_h_init * (3*cost*cost-1) /
// ( (r*r + 1./(r*r)) * sqrt(1.+r*r) ) ;
khi_init.std_spectral_base() ;
khi_init.smooth_decay(2, 1) ;
//##
// des_meridian(khi_init, 0., 3., "khi_init before", 1) ;
// arrete() ;
// khi_init.smooth_decay(3, 4) ;
// khi_init.spectral_display("khi_init") ;
// des_meridian(khi_init, 0., 3., "khi_init after", 2) ;
// arrete() ;
//##
Scalar mu_init(map) ;
mu_init = 0. * ampli_h_init / (1+r*r*r*r*r*r) ;
mu_init.std_spectral_base() ;
mu_init.mult_r() ;
mu_init.mult_r() ;
mu_init.mult_r() ;
mu_init.mult_cost() ;
//##
// des_meridian(mu_init, 0., 3., "mu_init before", 1) ;
// arrete() ;
// mu_init.smooth_decay(3, 4) ;
// mu_init.spectral_display("mu_init") ;
// des_meridian(mu_init, 0., 3., "mu_init after", 2) ;
// arrete() ;
//##
Sym_tensor_tt htt_init(map, otriad, ff) ; // htt is the TT part of hh
htt_init.set_khi_mu(khi_init, mu_init) ;
hh_init = htt_init ;
// des_meridian(hh_init, 0., 5., "hh_init") ;
maxabs( hh_init.divergence(ff), "Divergence of hh_init") ;
maxabs( hh_init.trace(ff), "Trace of hh_init") ;
arrete() ;
// Set up of field Q = Psi^2 N
// ---------------------------
Scalar qq_init(map) ;
Scalar tmp(map) ;
qq_init = 1. - relativistic_init / (1. + r*r) ;
qq_init.std_spectral_base() ; // sets standard spectral bases
// Set up of conformal metric gamma_tilde
// --------------------------------------
Metric tgam( ff.con() ) ; // construction from the flat metric
tgam = ff.con() + hh_init ; // initialization [ Eq. (51) ]
// Set up of shift vector beta
// ---------------------------
Vector beta_init(map, CON, otriad ) ;
beta_init.set_etat_zero() ;
// Set up of lapse function N
// --------------------------
Scalar nn_init(map) ;
nn_init = 1. - relativistic_init / sqrt(1. + r*r) ;
nn_init.std_spectral_base() ; // sets standard spectral bases
// Working stuff
// -------------
Scalar tmp0(map) ;
Sym_tensor sym_tmp(map, CON, otriad) ;
//======================================================================
// Start of time evolution
//======================================================================
double ttime = 0. ;
int jtime = 0 ;
Evolution_std<Scalar> nn_time(nn_init, 3) ;
Evolution_std<Vector> beta_time(beta_init, 3) ;
Evolution_std<Scalar> qq_time(qq_init, 3) ;
Evolution_std<Sym_tensor_trans> hh_time(hh_init, 3) ;
Evolution_std<Scalar> khi_time(khi_init, 3) ;
Evolution_std<Scalar> mu_time(mu_init, 3) ;
ttime += pdt ;
jtime++ ;
nn_time.update(nn_init, jtime, ttime) ;
beta_time.update(beta_init, jtime, ttime) ;
qq_time.update(qq_init, jtime, ttime) ;
hh_time.update(hh_init, jtime, ttime) ;
khi_time.update(khi_init, jtime, ttime) ;
mu_time.update(mu_init, jtime, ttime) ;
ttime += pdt ;
jtime++ ;
nn_time.update(nn_init, jtime, ttime) ;
beta_time.update(beta_init, jtime, ttime) ;
qq_time.update(qq_init, jtime, ttime) ;
hh_time.update(hh_init, jtime, ttime) ;
khi_time.update(khi_init, jtime, ttime) ;
mu_time.update(mu_init, jtime, ttime) ;
// Parameters for the d'Alembert equations
// ----------------------------------------
int bc = 2 ; // type of boundary condition : 2 = Bayliss & Turkel outgoing wave
Param par_khi ;
par_khi.add_double(pdt) ;
par_khi.add_int(bc) ;
int *workflag_khi = new int(0) ; // working flag
par_khi.add_int_mod(*workflag_khi) ;
Param par_mu ;
par_mu.add_double(pdt) ;
par_mu.add_int(bc) ;
int *workflag_mu = new int(0) ; // working flag
par_mu.add_int_mod(*workflag_mu) ;
for (jtime = 2; jtime <= jmax; jtime++) {
cout <<
"==============================================================\n"
<< " step: " << jtime << " time = " << ttime << endl
<< "==============================================================\n" ;
// Values at time step jtime:
const Scalar& nn = nn_time[jtime] ;
const Vector& beta = beta_time[jtime] ;
const Scalar& qq = qq_time[jtime] ;
const Sym_tensor_trans& hh = hh_time[jtime] ;
// Time derivatives:
Scalar nn_point = nn_time.time_derive(jtime) ;
nn_point.inc_dzpuis(2) ; // dzpuis : 0 -> 2
Vector beta_point = beta_time.time_derive(jtime) ;
beta_point.inc_dzpuis(2) ; // dzpuis : 0 -> 2
Sym_tensor_trans hh_point = hh_time.time_derive(jtime) ;
hh_point.inc_dzpuis(2) ; // dzpuis : 0 -> 2
// Sources of the Einstein equations:
Scalar source_nn(map) ;
Vector source_beta(map, CON, otriad) ;
Scalar source_qq(map) ;
Sym_tensor source_hh(map, CON, otriad) ;
if (compute_source) {
//==============================================
// Definition of references on derivatives:
// the source objects should not be modified
// in this scope
//==============================================
Scalar psi = sqrt(qq / nn) ;
psi.std_spectral_base() ;
Scalar ln_psi = log( psi ) ;
ln_psi.std_spectral_base() ;
Scalar psi2 = psi * psi ;
Scalar psi4 = psi2 * psi2 ;
const Sym_tensor& tgam_dd = tgam.cov() ; // {\tilde \gamma}_{ij}
const Sym_tensor& tgam_uu = tgam.con() ; // {\tilde \gamma}^{ij}
const Tensor_sym& dtgam = tgam_dd.derive_cov(ff) ;
// D_k {\tilde \gamma}_{ij}
const Tensor_sym& dhh = hh.derive_cov(ff) ; // D_k h^{ij}
const Vector& dln_psi = ln_psi.derive_cov(ff) ; // D_i ln(Psi)
const Vector& tdln_psi_u = ln_psi.derive_con(tgam) ; // tD^i ln(Psi)
const Vector& dnn = nn.derive_cov(ff) ; // D_i N
const Vector& tdnn_u = nn.derive_con(tgam) ; // tD^i N
const Vector& dqq = qq.derive_cov(ff) ; // D_i Q
const Scalar& div_beta = beta.divergence(ff) ; // D_k beta^k
// Conformal Killing operator applied to beta
// ------------------------------------------
Sym_tensor l_beta(map, CON, otriad) ; // (L beta)^{ij}
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
l_beta.set(i,j) = beta.derive_con(ff)(i,j)
+ beta.derive_con(ff)(j,i)
- 0.6666666666666666* div_beta * ff.con()(i,j) ;
}
}
// Conformal extrinsic curvature A
// -------------------------------
Sym_tensor aa(map, CON, otriad) ; // A^{ij}
aa = ( hh_point - hh.derive_lie(beta) + l_beta
- 0.6666666666666666 * div_beta * hh ) / (2.*nn) ;
Sym_tensor taa(map, COV, otriad) ; // {\tilde A}_{ij}
taa = aa.up_down(tgam) ;
des_meridian(aa(2,3), 0., 5., "A\\u\\gh\\gf\\d", 20) ;
des_meridian(aa(3,3), 0., 5., "A\\u\\gf\\gf\\d", 21) ;
// Source for Q [ Eq. (76) ]
// ------------
Scalar aa_quad = contract(taa, 0, 1, aa, 0, 1) ;
source_qq = 0.75 * psi4 * qq * aa_quad ;
tmp = contract( hh, 0, 1, dqq.derive_cov(ff), 0, 1 ) ;
tmp.inc_dzpuis() ;
source_qq -= tmp ;
tmp = 0.0625 * contract( dhh, 0, 1, dtgam, 0, 1 ).trace(tgam)
- 0.125 * contract( dhh, 0, 1, dtgam, 0, 2 ).trace(tgam)
+ 2.* contract( contract( tgam_uu, 0, dln_psi, 0), 0,
dln_psi, 0 ) ;
tmp0 = 2. * contract( tgam_uu, 0, 1,
dln_psi * dnn, 0, 1) ;
source_qq += psi2 * ( nn * tmp + tmp0 ) ;
// source_qq.spectral_display("source_qq") ;
// Source for N [ Eq. (80) ]
// ------------
source_nn = psi4 * nn * aa_quad ;
tmp = contract( hh, 0, 1, dnn.derive_cov(ff), 0, 1 ) ;
tmp.inc_dzpuis() ;
source_nn -= tmp + tmp0 ;
// source_nn.spectral_display("source_nn") ;
// Source for beta [ Eq. (79) ]
// ---------------
source_beta = 2. * ( contract(aa, 1,
dnn - 6.*nn * dln_psi, 0)
- nn * contract(tgam.connect().get_delta(), 1, 2, aa, 0, 1) ) ;
Vector vtmp = contract(hh, 0, 1,
beta.derive_cov(ff).derive_cov(ff), 1, 2)
+ 0.3333333333333333 *
contract(hh, 1, div_beta.derive_cov(ff), 0) ;
vtmp.inc_dzpuis() ; // dzpuis: 3 -> 4
source_beta -= vtmp ;
// source_beta.spectral_display("source_beta") ;
// Quadratic part of the Ricci tensor of gam_tilde
// ------------------------------------------------
Sym_tensor ricci_star(map, CON, otriad) ;
ricci_star = contract(hh, 0, 1, dhh.derive_cov(ff), 2, 3) ;
ricci_star.inc_dzpuis() ; // dzpuis : 3 --> 4
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += dhh(i,k,l) * dhh(j,l,k) ;
}
}
sym_tmp.set(i,j) = tmp ;
}
}
ricci_star -= sym_tmp ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
for (int m=1; m<=3; m++) {
for (int n=1; n<=3; n++) {
tmp += 0.5 * tgam_uu(i,k)*tgam_uu(j,l) * dhh(m,n,k) * dtgam(m,n,l)
+ tgam_dd(n,l) * dhh(m,n,k) * ( tgam_uu(i,k) * dhh(j,l,m)
+ tgam_uu(j,k) * dhh(i,l,m) )
- tgam_dd(k,l) * tgam_uu(m,n) * dhh(i,k,m) * dhh(j,l,n) ;
}
}
}
}
sym_tmp.set(i,j) = tmp ;
}
}
ricci_star += sym_tmp ;
ricci_star = 0.5 * ricci_star ;
// des_meridian(ricci_star(1,1), 0., 4., "Ricci_star^rr", 12) ;
// Curvature scalar of conformal metric :
// -------------------------------------
Scalar tricci_scal =
0.25 * contract( tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 1), 0, 1 )
- 0.5 * contract( tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 2), 0, 1 ) ;
// Full quadratic part of source for h : S^{ij}
// --------------------------------------------
Sym_tensor ss(map, CON, otriad) ;
sym_tmp = nn * (ricci_star + 8.* tdln_psi_u * tdln_psi_u)
+ 4.*( tdln_psi_u * tdnn_u + tdnn_u * tdln_psi_u )
- 0.3333333333333333 * (
nn * (tricci_scal
+ 8.* contract(dln_psi, 0, tdln_psi_u, 0) )
+ 8.* contract(dln_psi, 0, tdnn_u, 0) ) * tgam_uu ;
ss = sym_tmp / psi4 ;
sym_tmp = contract( tgam_uu, 1,
contract(tgam_uu, 1, dqq.derive_cov(ff), 0), 1) ;
sym_tmp.inc_dzpuis() ; // dzpuis : 3 --> 4
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += ( hh(i,k)*dhh(l,j,k) + hh(k,j)*dhh(i,l,k)
- hh(k,l)*dhh(i,j,k) ) * dqq(l) ;
}
}
sym_tmp.set(i,j) += 0.5 * tmp ;
}
}
tmp = qq.derive_con(tgam).divergence(tgam) ;
tmp.inc_dzpuis() ; // dzpuis : 3 --> 4
sym_tmp -= 0.3333333333333333 * tmp * tgam_uu ;
ss -= sym_tmp / (psi4*psi2) ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += tgam_dd(k,l) * aa(i,k) * aa(j,l) ;
}
}
sym_tmp.set(i,j) = 2. * tmp ;
}
}
ss += nn * sym_tmp ;
// Source for h
// ------------
Sym_tensor lbh = hh.derive_lie(beta) ;
source_hh = (nn*nn/psi4 - 1.) * hh.derive_con(ff).divergence(ff)
+ 2.* hh_point.derive_lie(beta) - lbh.derive_lie(beta) ;
source_hh.inc_dzpuis() ;
source_hh += 2.* nn * ss ;
//## Provisory: waiting for the Lie derivative to allow
// derivation with respect to a vector with dzpuis != 0
vtmp = beta_point ;
vtmp.dec_dzpuis(2) ;
sym_tmp = hh.derive_lie(vtmp) ;
sym_tmp.inc_dzpuis(2) ;
source_hh += sym_tmp
+ 1.3333333333333333 * div_beta* (hh_point - lbh)
+ 2. * (nn_point - nn.derive_lie(beta)) * aa ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
tmp += ( hh.derive_con(ff)(k,j,i)
+ hh.derive_con(ff)(i,k,j)
- hh.derive_con(ff)(i,j,k) ) * dqq(k) ;
}
sym_tmp.set(i,j) = tmp ;
}
}
source_hh -= nn / (psi4*psi2) * sym_tmp ;
tmp = beta_point.divergence(ff) - div_beta.derive_lie(beta) ;
tmp.inc_dzpuis() ;
source_hh += 0.6666666666666666* ( tmp
- 0.6666666666666666* div_beta * div_beta ) * hh ;
// (L beta_point)^ij --> sym_tmp
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
sym_tmp.set(i,j) = beta_point.derive_con(ff)(i,j)
+ beta_point.derive_con(ff)(j,i)
- 0.6666666666666666*
beta_point.divergence(ff) * ff.con()(i,j) ;
}
}
sym_tmp -= l_beta.derive_lie(beta) ;
sym_tmp.inc_dzpuis() ;
source_hh += 0.6666666666666666* div_beta * l_beta - sym_tmp ;
// des_meridian(source_hh(1,1), 0., 2., "source_hh^rr", 10) ;
source_hh.spectral_display("source_hh") ;
maxabs(source_hh, "Maxabs source_hh") ;
maxabs( source_hh.divergence(ff), "Divergence of source_hh") ;
maxabs( source_hh.transverse(ff).divergence(ff),
"Divergence of source_hh_transverse") ;
maxabs( source_hh.transverse(ff).trace(ff),
"Trace of source_hh_transverse") ;
arrete(jtime%jstop) ;
}
else{
source_hh.set_etat_zero() ;
}
//==============================================
// End of scope for references on derivatives
//==============================================
//=============================================
// Resolution of elliptic equations
//=============================================
// Resolution of the Poisson equation for the lapse
// ------------------------------------------------
Scalar nn_jp1 = source_nn.poisson() + 1. ;
//des_meridian(nn_jp1, 0., 5., "N", 40) ;
// Resolution of the Poisson equation for Q
// -----------------------------------------
Scalar qq_jp1 = source_qq.poisson() + 1. ;
// des_meridian(qq_jp1, 0., 5., "Q", 41) ;
// Resolution of the vector Poisson equation for the shift
//---------------------------------------------------------
Vector beta_jp1 = source_beta.poisson(0.3333333333333333, 0) ;
des_meridian(beta_jp1(1), 0., 5., "\\gb\\ur\\d", 42) ;
des_meridian(beta_jp1(2), 0., 5., "\\gb\\u\\gh\\d", 43) ;
des_meridian(beta_jp1(3), 0., 5., "\\gb\\u\\gf\\d", 44) ;
// Test:
Vector test_beta = (beta_jp1.derive_con(ff)).divergence(ff)
+ 0.3333333333333333 * (beta_jp1.divergence(ff)).derive_con(ff) ;
test_beta.inc_dzpuis() ;
cout << "Relative error in the resolution of the shift equation: \n" ;
diffrel(test_beta, source_beta) ;
diffrelmax(test_beta, source_beta) ;
// arrete() ;
//=============================================
// Resolution of wave equation for h
//=============================================
const Sym_tensor_tt& source_htt = source_hh.transverse(ff).tt_part() ;
//## Sym_tensor_tt source_htt(map, otriad, ff) ;
//## source_htt.set_etat_zero() ;
maxabs( source_htt.divergence(ff), "Divergence of source_htt") ;
maxabs( source_htt.trace(ff), "Trace of source_hhtt") ;
const Scalar& khi_source = source_htt.khi() ;
const Scalar& mu_source = source_htt.mu() ;
// des_meridian(khi_source, 0., 2., "khi_source", 11) ;
Scalar khi_jp1 = khi_time[jtime].avance_dalembert(par_khi,
khi_time[jtime-1], khi_source) ;
khi_jp1.smooth_decay(2,2) ;
// des_meridian(khi_jp1, 0., 5., "khi_jp1", 12) ;
// const Scalar* khides[] = {&khi_jp1, &(khi_time[jtime]),
// &(khi_time[jtime-1])} ;
// double thetades[] = {0., 0., 0.} ;
// double phides[] = {0., 0., 0.} ;
// des_profile_mult(khides, 3, 0., 4., thetades, phides, 1, false, "khi") ;
maxabs(khi_jp1 - khi_time[jtime], "Variation of khi") ;
Scalar mu_jp1 = mu_time[jtime].avance_dalembert(par_mu,
mu_time[jtime-1], mu_source) ;
mu_jp1.smooth_decay(2,2) ;
// des_meridian(mu_jp1, 0., 5., "mu_jp1", 14) ;
Sym_tensor_tt htt_jp1(map, otriad, ff) ;
htt_jp1.set_khi_mu(khi_jp1, mu_jp1) ;
Sym_tensor_trans hh_jp1 = htt_jp1 ; //## the trace should be added
// des_meridian(hh_jp1, 0., 5., "hh") ;
des_meridian(hh(2,3), 0., 5., "h\\u\\gh\\gf\\d", 30) ;
des_meridian(hh(3,3), 0., 5., "h\\u\\gf\\gf\\d", 31) ;
// hh(2,3).visu_section('z', 0., -4., 4., -4., 4., "h^tp", "h_tp") ;
hh(3,3).visu_section_anim('z', 0., -4., 4., -4., 4., jtime, ttime, 4,
"h^pp", "hpp") ;
cout << "Next step : " << jtime + 1 << endl ;
arrete(jtime%jstop) ;
// Next time step
// --------------
ttime += pdt ;
nn_time.update(nn_jp1, jtime+1, ttime) ;
beta_time.update(beta_jp1, jtime+1, ttime) ;
qq_time.update(qq_jp1, jtime+1, ttime) ;
hh_time.update(hh_jp1, jtime+1, ttime) ;
khi_time.update(khi_jp1, jtime+1, ttime) ;
mu_time.update(mu_jp1, jtime+1, ttime) ;
}
par_khi.clean_all() ;
par_mu.clean_all() ;
return EXIT_SUCCESS ;
}
|