1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
* Main code for Isolated Horizon in spherical symmetry and flat
* conformal metric: to test kappa = const condition
*
*/
/*
* Copyright (c) 2004-2005 Jose Luis Jaramillo
* Francois limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char isolhor_C[] = "$Header: /cvsroot/Lorene/Codes/Isol_hor/isolhor_spher.C,v 1.3 2014/10/13 08:53:57 j_novak Exp $" ;
// C++ headers
#include "headcpp.h"
// C headers
#include <cstdlib>
#include <cmath>
#include <cstring>
// Lorene headers
#include "tenseur.h"
#include "metric.h"
#include "evolution.h"
#include "param.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"
#include "time_slice.h"
#include "isol_hor.h"
using namespace Lorene ;
int main() {
//======================================================================
// Construction and initialization of the various objects
//======================================================================
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz, nt, np, nr1, nrp1 ;
ifstream fpar("par_hor.d") ;
fpar.ignore(1000, '\n') ;
fpar.ignore(1000, '\n') ;
fpar >> nz; fpar.ignore(1000, '\n');
fpar >> nt; fpar.ignore(1000, '\n');
fpar >> np; fpar.ignore(1000, '\n');
fpar >> nr1; fpar.ignore(1000, '\n');
fpar >> nrp1; fpar.ignore(1000, '\n');
int type_t = SYM ; // symmetry with respect to the equatorial plane
int type_p = NONSYM ; // no symmetry in phi
// Reading of the parameter file
// ------------------------------
int niter, bound_nn, bound_psi, bound_beta, solve_lapse, solve_psi ;
int solve_shift ;
double radius, relax, seuil, ang_vel, boost_x, boost_z, lim_nn ;
fpar >> radius; fpar.ignore(1000, '\n');
fpar >> relax; fpar.ignore(1000, '\n');
fpar >> seuil; fpar.ignore(1000, '\n');
fpar >> niter; fpar.ignore(1000, '\n');
fpar >> ang_vel; fpar.ignore(1000, '\n');
fpar >> boost_x ;
fpar >> boost_z; fpar.ignore(1000, '\n');
fpar >> bound_nn ;
fpar >> lim_nn ; fpar.ignore(1000, '\n');
fpar >> bound_psi ; fpar.ignore(1000, '\n');
fpar >> bound_beta ; fpar.ignore(1000, '\n');
fpar >> solve_lapse ; fpar.ignore(1000, '\n');
fpar >> solve_psi ; fpar.ignore(1000, '\n');
fpar >> solve_shift ; fpar.ignore(1000, '\n');
int* nr_tab = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
for (int l=0; l<nz; l++) {
if (l==1) nr_tab[1] = nr1 ;
else nr_tab[l] = nrp1 ;
np_tab[l] = np ;
nt_tab[l] = nt ;
bornes[l] = pow(2., l-1) * radius ;
}
bornes[0] = 0. ;
bornes[nz] = __infinity ;
// Type of r sampling :
int* type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
// Multi-domain grid construction:
Mg3d mgrid(nz, nr_tab, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_af mp(mgrid, bornes) ; // Mapping construction
// Denomination of various coordinates associated with the mapping
// ---------------------------------------------------------------
const Coord& r = mp.r ; // r field
const Coord& theta = mp.tet ; // r field
const Coord& costt = mp.cost ; // cos(theta) field
const Coord& sintt = mp.sint ; // sin(theta) field
const Coord& cospp = mp.cosp ; // cos(phi) field
const Coord& sinpp = mp.sinp ; // sin(phi) field
Scalar rr(mp) ;
rr = r ;
rr.std_spectral_base() ;
Scalar cos2t (mp) ;
cos2t = cos(2.*theta) ;
Scalar cost (mp) ;
cost = costt ;
Scalar cosp (mp) ;
cosp = cospp ;
Scalar sint (mp) ;
sint = sintt ;
Scalar sinp (mp) ;
sinp = sinpp ;
// Flat metric f
// -------------
const Metric_flat& ff = mp.flat_met_spher() ;
const Base_vect_spher& otriad = mp.get_bvect_spher() ;
// Working stuff
// -------------
Scalar tmp_scal(mp) ;
Vector tmp_vect(mp, CON, otriad) ;
Sym_tensor tmp_sym(mp, CON, otriad) ;
// Key function
Scalar unsr(1./rr) ;
unsr.set_domain(0) = 1 ; // scalar set to 1 in the nucleus
unsr.std_spectral_base() ;
Scalar expmr (exp (- 1/((rr-1)*(rr-1)))) ;
expmr.std_spectral_base() ;
Scalar expmrr (exp(-pow(rr-3,2.))) ;
expmrr.std_spectral_base() ;
// =================================================================
// =================================================================
// Physical Parameters
//--------------------
// Set up of lapse function N
// --------------------------
Scalar nn_init(mp) ;
nn_init = 1. - 0.5*unsr ;
nn_init.std_spectral_base() ; // sets standard spectral bases
// Set up of field Psi
// -------------------
Scalar psi_init(mp) ;
psi_init = 1. ; //+ 0.1*unsr ;
psi_init.std_spectral_base() ; // sets standard spectral bases
// Set up of shift vector beta
// ---------------------------
Vector beta_init(mp, CON, mp.get_bvect_spher()) ;
beta_init.set(1) = 0.1*unsr*unsr ;
beta_init.set(2) = 0. ;
beta_init.set(3) = 0. ;
beta_init.annule_domain(0) ;
beta_init.std_spectral_base() ;
// TrK, TrK_point
// --------------
Scalar trK (mp) ;
trK = 0*0.1*unsr*unsr ;
trK.std_spectral_base() ;
trK.inc_dzpuis(2) ;
Scalar trK_point (mp) ;
trK_point = 0. ;
trK_point.std_spectral_base() ;
trK_point.inc_dzpuis(2) ;
// gamt, gamt_point
// ----------------
Sym_tensor gamt(mp, COV, mp.get_bvect_spher()) ;
gamt = ff.cov() ;
Metric met_gamt (gamt) ;
// Gamma-tilde_point
//------------------
Scalar khi(mp) ;
Scalar mu(mp) ;
khi = 0. ;
khi.std_spectral_base() ;
mu = 0. ;
mu.std_spectral_base() ;
Sym_tensor_tt hh_tmp (mp, otriad, ff) ;
hh_tmp.set_khi_mu(khi, mu) ;
Sym_tensor gamt_point(mp, CON, mp.get_bvect_spher()) ;
gamt_point = hh_tmp ;
gamt_point.inc_dzpuis(2) ;
// =================================================================
// =================================================================
double mm, aaa, hh ;
// Set up of extrinsic curvature
// -----------------------------
Metric met_gam(psi_init*psi_init*psi_init*psi_init*gamt) ;
Sym_tensor kk_init (mp, CON, mp.get_bvect_spher()) ;
int check ;
check = 0 ;
for (int k=0; k<np_tab[1]; k++)
for (int j=0; j<nt_tab[1]; j++){
if (nn_init.val_grid_point(1, k, j , 0) < 1e-12){
check = 1 ;
break ;
}
}
if (check == 0)
kk_init = - 0.5 * met_gam.con().derive_lie(beta_init) / nn_init ;
else {
Sym_tensor kk_temp (mp, CON, mp.get_bvect_spher()) ;
kk_temp = - 0.5 * met_gam.con().derive_lie(beta_init) ;
Scalar nn_sxpun (division_xpun (Cmp(nn_init), 0)) ;
nn_sxpun.set_domain(0) = 1. ;
Scalar auxi (mp) ;
for (int i=1 ; i<=3 ; i++)
for (int j=i ; j<=3 ; j++) {
auxi = kk_temp(i, j) ;
auxi.annule_domain(0) ;
auxi = division_xpun (auxi, 0) ;
kk_init.set(i,j) = auxi / nn_sxpun ;
}
}
Sym_tensor aa_init (mp, CON, mp.get_bvect_spher()) ;
aa_init = psi_init*psi_init*psi_init*psi_init*kk_init
- 1./3. * trK * met_gamt.con() ;
//-------------------------------------
// Construction of the space-time
//-------------------------------------
Isol_hor isolhor(mp, nn_init, psi_init, beta_init, aa_init, met_gamt,
gamt_point, trK, trK_point, ff, 3) ;
// In order to initialise isolhor.k_uu() and k_dd() at the good value
Sym_tensor bidon (mp, CON, mp.get_bvect_spher()) ;
bidon = isolhor.k_uu() ;
Sym_tensor bidon2 (isolhor.k_dd()) ;
Scalar bidon3 (isolhor.aa_quad()) ;
//-----------------------------------------
// "Call to init_data.C"
//-----------------------------------------
isolhor.set_omega(ang_vel) ;
isolhor.init_data_spher(bound_nn, lim_nn, bound_psi, bound_beta, solve_lapse,
solve_psi, solve_shift, seuil, relax, niter) ;
// Expansion
//----------
Scalar expansion = contract(isolhor.gam().radial_vect().derive_cov(isolhor.gam()), 0,1)
+ contract(contract(isolhor.k_dd(), 0, isolhor.gam().radial_vect(), 0),
0, isolhor.gam().radial_vect(), 0)
- isolhor.trk() ;
expansion.dec_dzpuis(2) ;
double der_expansion_0 = expansion.derive_cov(isolhor.gam())(1)
.val_point(1.00000001, 0, 0.) ;
double der_expansion_1 = expansion.derive_cov(isolhor.gam())(1)
.val_point(1.00000001, M_PI/4, 0.) ;
double der_expansion_2 = expansion.derive_cov(isolhor.gam())(1)
.val_point(1.00000001, M_PI/2, 0.) ;
cout << "Radial derivative of the expansion at (1,0,0) = "
<< der_expansion_0<<endl ;
cout << "Radial derivative of the expansion at (1,Pi/4,0) = "
<< der_expansion_1<<endl ;
cout << "Radial derivative of the expansion at (1,Pi/2,0) = "
<< der_expansion_2<<endl ;
cout << "------------------------------------------------------"<<endl;
// des_meridian(expansion, 1, 1.2, "Expansion theta", 2) ;
des_meridian(expansion, 1, 4., "Expansion theta", 1) ;
// des_meridian(expansion, 1, 10., "Expansion theta", 3) ;
arrete() ;
double max_exp = expansion.val_grid_point(1, 0, 0, 0) ;
double min_exp = expansion.val_grid_point(1, 0, 0, 0) ;
int nnp = mp.get_mg()->get_np(1) ;
int nnt = mp.get_mg()->get_nt(1) ;
for (int k=0 ; k<nnp ; k++)
for (int j=0 ; j<nnt ; j++){
if (expansion.val_grid_point(1, k, j, 0) > max_exp)
max_exp = expansion.val_grid_point(1, k, j, 0) ;
if (expansion.val_grid_point(1, k, j, 0) < min_exp)
min_exp = expansion.val_grid_point(1, k, j, 0) ;
}
cout << "max_exp = " << max_exp << endl
<< "min_kss = " << min_exp << endl ;
// Save in a file
// --------------
FILE* fresu = fopen("resu.d", "w") ;
mgrid.sauve(fresu) ;
mp.sauve(fresu) ;
isolhor.sauve(fresu, true) ;
fclose(fresu) ;
// Test of the constraints
//------------------------
/*
if (solve_shift == 1)
isolhor.update_aa() ;
else
isolhor.aa_kerr_ww(mm, aaa) ;
*/
cout<< "----------------------------------------" <<endl ;
Tbl check_ham = isolhor.check_hamiltonian_constraint() ;
Tbl check_mom = isolhor.check_momentum_constraint() ;
cout<< "----------------------------------------" <<endl ;
// Physical parameters of the Black Hole
//--------------------------------------
cout<< "------------------------------------------------" <<endl;
cout<< " Physical parameters of the Black Hole " <<endl;
cout<< "------------------------------------------------" <<endl;
double rr_hor = isolhor.radius_hor() ;
cout<< "Radius of the horizon = " << rr_hor <<endl ;
double jj_hor = isolhor.ang_mom_hor() ;
cout<< "Angular momentum of the horizon = " << jj_hor <<endl ;
double mm_hor = isolhor.mass_hor() ;
cout<< "Mass of the horizon = " << mm_hor <<endl ;
double kappa_hor = isolhor.kappa_hor() ;
cout<< "Surface gravity of the horizon = " << kappa_hor <<endl ;
double omega_hor = isolhor.omega_hor() ;
cout<< "Orbital velocity of the horizon = " << omega_hor <<endl ;
// Physical parameters of the Bulk
//--------------------------------
cout.precision(8) ;
cout<< endl;
cout<< "------------------------------------------------" <<endl;
cout<< " Physical parameters of the Bulk " <<endl;
cout<< "------------------------------------------------" <<endl;
double mm_adm = isolhor.adm_mass() ;
cout << "ADM mass= " << mm_adm <<endl ;
double jj_adm = isolhor.ang_mom_adm() ;
cout << "ADM angular momentum= " << jj_adm <<endl ;
double aa = jj_adm / mm_adm ;
cout << "J / M (ADM) : " << aa << endl ;
double aasmm = aa / mm_adm ;
cout << "J / M^2 : " << aasmm << endl ;
double epsa = isolhor.area_hor() /
(8*M_PI*(mm_adm*mm_adm + pow(pow(mm_adm, 4.) - jj_adm*jj_adm, 0.5))) ;
cout << "epsilon A : " << epsa << endl ;
double diff_mm = (mm_adm - mm_hor) / mm_adm ;
cout << "diff mass : " << diff_mm << endl ;
double diff_jj = (jj_adm - jj_hor) / jj_adm ;
cout << "diffangular momentum : " << diff_jj << endl ;
// Writing of all global quantities in a file
ofstream resformat("resformat.d") ;
resformat.precision(6) ;
resformat << "# Ham. constr. Mom. constr. " << endl ;
resformat << max(check_ham) << " " << max(check_mom) << endl ;
resformat.precision(10) ;
resformat << "# r_hor J_hor M_hor kappa_hor omega_hor" << endl ;
resformat << rr_hor << " " << jj_hor << " " << mm_hor << " "
<< kappa_hor << " " << omega_hor << endl ;
resformat << "# M_adm J_adm J/M J/M2 Eps_a" << endl ;
resformat << mm_adm << " " << jj_adm << " " << aa << " "
<< aasmm << " " << epsa << endl ;
resformat << "# diff_mm diff_jj" << endl ;
resformat << diff_mm << " " << diff_jj << endl ;
resformat.close() ;
//--------------------------------------
// Comparison
//--------------------------------------
cout<<"Tout va bien boudiou / Todo bien!!! (Viva Cai!)"<<endl ;
return EXIT_SUCCESS ;
}
|