1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
/*
* Copyright (c) 2002, 2003 Jerome Novak
* Copyright (c) 2003, 2004 Reinhard Prix
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/***********************************************************************
* calculate stationary configuration of superfluid neutron star
***********************************************************************/
// // headers C
#include <cmath>
#include <gsl/gsl_integration.h>
#include <sstream>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
// headers Lorene
#include "et_rot_bifluid.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"
namespace Lorene{
// Local prototype (for drawings only)
Cmp raccord_c1(const Cmp& uu, int l1) ;
}
using namespace Lorene ;
void compare_analytic (Et_rot_bifluid& star, int adapt, const char *resdir);
string get_file_base (bool relat, double xp, double sig);
string get_file_base (bool relat, double xp, double sig, double eps, double om1, double om2, int typeos, int nzet, int adapt);
// some global EOS parameters
double kap1, kap2, kap3, beta, m1, m2, detA, k1, k2, kk, R;
double sigma, eps, eps_n, xp;
double nc, rhoc; // central density
//----------------------------------------------------------------------
// stuff for GSL-integration of A(r)
typedef struct {
Cmp *AofR;
double theta;
double phi;
} AofR_params;
double AofR (double r, void *params);
//----------------------------------------------------------------------
//******************************************************************************
int main(){
using namespace Unites ;
//------------------------------------------------------------------
// Parameters of the computation
//------------------------------------------------------------------
bool relat, graph;
int mer_max, mer_rot, mer_change_omega, mer_fix_omega,
mermax_poisson, nz, nzet, nt, np;
double ent1_c, ent2_c, freq_si, freq2_si, precis, freq_ini_si;
double freq2_ini_si,relax, relax_poisson ;
// adaptive-grid paramters + defaults
int nzadapt = 0;
double thres_adapt = 0.0;
double precis_adapt = 1.e-14;
const char *parrot = "settings.par"; // config-file
int res = 0;
res += read_variable (parrot, "relat", relat);
res += read_variable (NULL, "ent1_c", ent1_c);
res += read_variable (NULL, "ent2_c",ent2_c);
res += read_variable (NULL, "freq_si", freq_si);
res += read_variable (NULL, "freq2_si", freq2_si);
res += read_variable (NULL, "mer_max", mer_max);
res += read_variable (NULL, "precis", precis);
res += read_variable (NULL, "mer_rot", mer_rot);
res += read_variable (NULL, "freq_ini_si", freq_ini_si);
res += read_variable (NULL, "freq2_ini_si", freq2_ini_si);
res += read_variable (NULL, "mer_change_omega", mer_change_omega);
res += read_variable (NULL, "mer_fix_omega", mer_fix_omega);
res += read_variable (NULL, "relax", relax);
res += read_variable (NULL, "mermax_poisson", mermax_poisson);
res += read_variable (NULL, "relax_poisson", relax_poisson);
res += read_variable (NULL, "graph", graph);
res += read_variable (NULL, "nz", nz);
res += read_variable (NULL, "nzet", nzet);
res += read_variable (NULL, "nt", nt);
res += read_variable (NULL, "np", np);
if ( res != 0 )
{
cerr << "An error ocurred in reading the parameter file 'settings.par'. Terminating...\n";
exit (-1);
}
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
char cbuf[50]; // man, <ios> does not seem to exist here...
for (int l=0; l<nz; l++) {
sprintf (cbuf, "nr%d", l);
res += read_variable (NULL, cbuf, nr[l]);
sprintf (cbuf, "rmin%d", l);
res += read_variable (NULL, cbuf, bornes[l]);
np_tab[l] = np ;
nt_tab[l] = nt ;
// cout << "DEBUG: l= "<<l<< ", read in nr[l] = " << nr[l] << "; rmin[l] = " << bornes[l] << endl;
}
bornes[nz] = __infinity ;
Tbl ent_limit(nzet) ;
ent_limit.set_etat_qcq() ;
ent_limit.set(nzet-1) = 0 ; // enthalpy at the stellar surface
Tbl ent2_limit(ent_limit) ;
ent2_limit.set_etat_qcq() ;
ent2_limit.set(nzet-1) = 0 ; // enthalpy 2 at the stellar surface
double tmp;
for (int l=0; l<nzet-1; l++) {
sprintf (cbuf, "ent_limit%d", l);
res += read_variable (NULL, cbuf, tmp);
ent_limit.set(l) = tmp;
ent2_limit.set(l) = tmp;
}
if ( res != 0 )
{
cerr << "An error ocurred in reading the parameter file " << parrot <<". Terminating...\n";
exit (-1);
}
// Read paramters specific to adaptive grid (optional)
// --------------------------------------------------
if ( (read_variable (NULL, "nzadapt", nzadapt) == 0) && (nzadapt > 0) ) // do we want adaptive grid?
{
res += read_variable (NULL, "thres_adapt", thres_adapt);
res += read_variable (NULL, "precis_adapt", precis_adapt);
if (res != 0)
cout << "WARNING: some adaptive-grid variables were not found! Using default ... \n";
}
// Read parameters specific to Kepler-limit (optional)
// --------------------------------------------------
// Default values:
int kepler_fluid = 0; // Kepler limit for which fluid? 1,2; 3 = both
int kepler_wait_steps = 1; // how many steps after mer_fix_omega shall we start?
double kepler_factor = 1.01; // factor to increase omega in each step to approach Kepler (>1!)
res = 0;
if( (read_variable (NULL, "kepler_fluid", kepler_fluid) == 0) && (kepler_fluid > 0) )
{
res += read_variable (NULL, "kepler_wait_steps", kepler_wait_steps);
res += read_variable (NULL, "kepler_factor", kepler_factor);
if (res != 0)
cout << "WARNING: some Kepler-limit parameters were not found in settings.par! Using default ... \n";
}
// Read parameters specific to triaxial perturbation (optional)
// ------------------------------------------------------------
// Default values:
int mer_triax = 2000 ; //step at which the 3-D perturbation is switched on
double ampli_triax = 1.e-3 ; // relative amplitude of the 3-D perturbation
res = 0;
if( (read_variable (NULL, "mer_triax", mer_triax) == 0) && (mer_triax < mer_max) )
{
res += read_variable (NULL, "ampli_triax", ampli_triax) ;
if (res != 0)
cout << "WARNING: some 3D perturbation parameters were not found in settings.par! Using default ... \n";
}
// read parameters related to mass-convergence (optional)
// -------------------------------------------------------
int mer_mass = -1; /* default: no mass-adaption */
double mbar1_wanted, mbar2_wanted, aexp_mass = 0.5;
res = 0;
if ( (read_variable (parrot, "mer_mass", mer_mass) == 0) && (mer_mass > 0) )
{
res += read_variable (NULL, "mbar1_wanted", mbar1_wanted);
res += read_variable (NULL, "mbar2_wanted", mbar2_wanted);
if (res != 0)
{
cout << "ERROR: mer_mass > 0 but 'mbar1_wanted' or 'mbar2_wanted' not set!\n";
exit (-1);
}
// correct units of baryon-masses: (input is in Solar masses)
mbar1_wanted *= msol;
mbar2_wanted *= msol;
read_variable (NULL, "aexp_mass", aexp_mass);
} /* if fixed baryon masses */
/* Directory to store results in */
char *resdir = NULL;
if ( read_variable (NULL, "resdir", &resdir) != 0)
resdir = const_cast<char*>("Results"); /* default value */
// Particular cases
// ----------------
// Initial frequency = final frequency
if ( freq_ini_si < 0 ) {
freq_ini_si = freq_si ;
mer_change_omega = mer_rot ;
mer_fix_omega = mer_rot + 1 ;
}
//-----------------------------------------------------------------------
// Equation of state
//-----------------------------------------------------------------------
/* eos-params are read from the same parameter file now! */
Eos_bifluid* peos = Eos_bifluid::eos_from_file(parrot);
Eos_bifluid& eos = *peos ;
//-----------------------------------------------------------------------
// Construction of the multi-grid and the mapping
//-----------------------------------------------------------------------
// Type of r sampling :
int* type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
// Type of sampling in theta and phi :
int type_t = SYM ;
int type_p = SYM ;
Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_et mp(mg, bornes) ;
// Cleaning
// --------
delete [] nr ;
delete [] nt_tab ;
delete [] np_tab ;
delete [] type_r ;
delete [] bornes ;
cout << endl
<< "==========================================================" << endl
<< " Physical parameters " << endl
<< "=========================================================="
<< endl ;
cout << endl ;
cout << endl << "Equation of state : "
<< endl << "================= " << endl ;
cout << eos << endl ;
cout << "Central enthalpy 1 : " << ent1_c << " c^2" << endl ;
cout << "Central enthalpy 2 : " << ent2_c << " c^2" << endl ;
cout << "Rotation frequency : " << freq_si << " Hz" << endl ;
cout << "Rotation frequency 2 : " << freq2_si << " Hz" << endl ;
cout << endl
<< "==========================================================" << endl
<< " Computational parameters " << endl
<< "=========================================================="
<< endl << endl ;
cout << "Maximum number of steps in the main iteration : "
<< mer_max << endl ;
cout << "Relaxation factor in the main iteration : "
<< relax << endl ;
cout << "Threshold on the enthalpy relative change for ending the computation : "
<< precis << endl ;
cout << "Maximum number of steps in Map_et::poisson : "
<< mermax_poisson << endl ;
cout << "Relaxation factor in Map_et::poisson : "
<< relax_poisson << endl ;
cout << endl << "Multi-grid : "
<< endl << "==========" << endl << mg << endl ;
cout << "Mapping : "
<< endl << "=======" << endl << mp << endl ;
//-----------------------------------------------------------------------
// Construction of the star
//-----------------------------------------------------------------------
Et_rot_bifluid star(mp, nzet, relat, eos) ;
if ( star.is_relativistic() ) {
cout << "========================" << endl ;
cout << "Relativistic computation" << endl ;
cout << "========================" << endl ;
}
else {
cout << "=====================" << endl ;
cout << "Newtonian computation" << endl ;
cout << "=====================" << endl ;
}
//-----------------------------------------------------------------------
// Initialization of the enthalpy field
//-----------------------------------------------------------------------
const Coord& r = mp.r ;
double ray0 = mp.val_r(nzet-1, 1., 0., 0.) ;
Cmp enta(mp) ;
enta = ent1_c * ( 1 - r*r / (ray0*ray0) ) ;
enta.annule(nz-1) ;
enta.std_base_scal() ;
Cmp entb = enta * ent2_c/ent1_c ;
star.set_enthalpies(enta, entb) ;
// Initialization of (E,S,U,etc...) (quantities relative to the Eulerian obs)
star.hydro_euler() ;
cout << endl << "Initial star : "
<< endl << "============ " << endl ;
cout << star << endl ;
//-----------------------------------------------------------------------
// Computation of the rotating equilibrium
//-----------------------------------------------------------------------
double omega = 2 * M_PI * freq_si / f_unit ;
double omega_ini = 2 * M_PI * freq_ini_si / f_unit ;
double omega2 = 2 * M_PI * freq2_si / f_unit ;
double omega2_ini = 2 * M_PI * freq2_ini_si / f_unit ;
Itbl icontrol(9) ;
icontrol.set_etat_qcq() ;
icontrol.set(0) = mer_max ;
icontrol.set(1) = mer_rot ;
icontrol.set(2) = mer_change_omega ;
icontrol.set(3) = mer_fix_omega ;
icontrol.set(4) = mermax_poisson ;
icontrol.set(5) = nzadapt; // nb of domains for adaptive grid
icontrol.set(6) = kepler_fluid; // index of fluid for Kepler-search (0=none)
icontrol.set(7) = kepler_wait_steps;
icontrol.set(8) = mer_triax ; // starting of triaxial perturbations
Tbl control(9) ;
control.set_etat_qcq() ;
control.set(0) = precis ;
control.set(1) = omega_ini ;
control.set(2) = omega2_ini ;
control.set(3) = relax ;
control.set(4) = relax_poisson ;
control.set(5) = thres_adapt;
control.set(6) = precis_adapt;
control.set(7) = kepler_factor;
control.set(8) = ampli_triax ;
Tbl diff(9) ;
star.equilibrium_bi(ent1_c, ent2_c, omega, omega2, ent_limit,
ent2_limit, icontrol, control, diff,
mer_mass, mbar1_wanted, mbar2_wanted, aexp_mass);
cout << endl << "Final star : "
<< endl << "========== " << endl ;
cout.precision(10) ;
cout << star << endl ;
double vit_triax = diff(8) ;
cout << "Growing rate of triaxial perturbation: " << vit_triax
<< endl ;
//-----------------------------------------------
// General features of the final configuration
// saved in a file
//-----------------------------------------------
ofstream fichfinal("calcul.d") ;
fichfinal.precision(10) ;
if ( star.is_relativistic() ) {
fichfinal << "Relativistic computation" << endl ;
}
else {
fichfinal << "Newtonian computation" << endl ;
}
fichfinal << star.get_eos() << endl ;
fichfinal << endl << "Total CPU time : " << endl ;
fichfinal << "Memory size : " << endl << endl ;
fichfinal << endl << endl ;
fichfinal << "Grid : " << endl ;
fichfinal << "------ " << endl ;
fichfinal << *(star.get_mp().get_mg()) << endl ;
fichfinal << endl << "Physical characteristics : " << endl ;
fichfinal << "-------------------------" << endl ;
fichfinal << star << endl ;
fichfinal << "Growing rate of triaxial perturbation: " << vit_triax
<< endl ;
fichfinal << endl <<
"==================================================================="
<< endl ;
fichfinal << "Diff_ent : " << diff(0) << endl ;
fichfinal << "Relative error on the virial theorem GRV2 : "
<< star.grv2() << endl ;
fichfinal << "Relative error on the virial theorem GRV3 : "
<< star.grv3() << endl ;
// total central densities
m1 = eos.get_m1();
m2 = eos.get_m2();
double rhon_c = m1 * star.get_nbar()()(0,0,0,0);
double rhop_c = m2 * star.get_nbar2()()(0,0,0,0);
fichfinal << "\n\nCentral neutron density: " << rhon_c << " x 0.1 fm^-3 \n";
fichfinal << "Central proton density: " << rhop_c << " x 0.1 fm^-3 \n";
fichfinal << "Total central baryon density : " << rhon_c + rhop_c << " x 0.1 fm^-3 \n\n";
fichfinal << endl <<
"================================================================" << endl ;
fichfinal <<
" PARAMETERS USED FOR THE COMPUTATION (file settings.par) : " << endl ;
fichfinal <<
"================================================================" << endl ;
fichfinal.close() ;
system("cat settings.par >> calcul.d") ;
fichfinal.open("calcul.d", ios::app) ;
// Identification du code et de ses sous-routines (no. de version RCS) :
fichfinal.open("calcul.d", ios::app) ;
fichfinal << endl <<
"================================================================" << endl ;
fichfinal << " IDENTIFICATION OF THE CODE : " << endl ;
fichfinal <<
"================================================================" << endl ;
fichfinal.close() ;
system("ident sfstar >> calcul.d") ;
// Saveguard of the whole configuration
// ------------------------------------
FILE* fresu = fopen("resu.d", "w") ;
star.get_mp().get_mg()->sauve(fresu) ; // writing of the grid
star.get_mp().sauve(fresu) ; // writing of the mapping
star.get_eos().sauve(fresu) ; // writing of the EOS
star.sauve(fresu) ; // writing of the star
fclose(fresu) ;
// Drawings
// --------
if (graph == 1) {
char title[80] ;
char bslash[2] = {92, '\0'} ; // 92 is the ASCII code for backslash
int nzdes = star.get_nzet() ;
// Cmp defining the surface of the star (via the density fields)
//
Cmp surf(mp) ;
surf = -0.2*star.get_nbar()()(0,0,0,0) ;
surf.annule(0, star.get_nzet()-1) ;
surf += star.get_nbar()() ; ;
surf.std_base_scal();
// des_profile(surf, 0, 1.5, M_PI/2, 0, "surf before prolonge");
surf = prolonge_c1(surf, star.get_nzet()) ;
// des_profile(surf, 0, 1.5, M_PI/2, 0, "surf after prolonge");
Cmp surf2(mp) ;
surf2 = -0.2*star.get_nbar2()()(0,0,0,0) ;
surf2.annule(0, star.get_nzet()-1) ;
surf2 += star.get_nbar2()() ; ;
surf2 = prolonge_c1(surf2, star.get_nzet()) ;
des_bi_coupe_y(star.get_nbar()(), 0., nzdes, "Fluid 1 baryonic density", &surf, &surf) ;
des_bi_coupe_y(star.get_nbar2()(), 0., nzdes, "Fluid 2 baryonic density", &surf2, &surf2) ;
des_bi_coupe_y(star.get_logn()(), 0., nzdes, "Grav. potential", &surf, &surf2) ;
strcpy(title, "Azimuthal shift N") ;
strcat(title, bslash) ;
strcat(title, "u") ;
strcat(title, bslash) ;
strcat(title, "gf") ;
des_bi_coupe_y(star.get_nphi()(), 0., nzdes, title, &surf, &surf2) ;
strcpy(title, "Metric potential ") ;
strcat(title, bslash) ;
strcat(title, "gz") ;
des_bi_coupe_y(star.get_dzeta()(), 0., nzdes, title, &surf, &surf2) ;
}
// now print out key-values of the configuration in such a "translated" way
// that we can compare the results to the analytic solution of PCA02:
// if (eos.identify() == 2) // only do that if type = eos_bf_poly_newt
// compare_analytic (star, nzadapt, resdir);
compare_analytic (star, nzadapt, resdir);
// Cleaning
// --------
delete peos ;
exit(EXIT_SUCCESS) ;
return EXIT_SUCCESS ;
} // main()
// ----------------------------------------------------------------------
// compare_analytic()
// print out appropriate "translations" of parameters and results such that
// we can compare them to the analytic solution of PCA02
//----------------------------------------------------------------------
void
compare_analytic (Et_rot_bifluid& star, int adapt, const char *resdir)
{
using namespace Unites ;
Eos_bf_poly eos = dynamic_cast<const Eos_bf_poly&>(star.get_eos());
// // let's see if it's really what we called "analytic" EOS in PCA02:
// if ( (eos.identify() != 2) || (eos.get_gam1() != 2) || (eos.get_gam2() != 2) ||
// (eos.get_gam3() != 1) || (eos.get_gam4() != 1) )
// {
// cout << "This EOS is not of type Newtonian analytic EOS, compare_analytic() useless here!\n";
// return;
// }
// else
// {
// cout << "\n\n----------------------------------------------------------------------" << endl;
// cout << " compare_analytic() called on AnalyticEOS: now comparing... " << endl << endl;
// }
double muc1 = star.get_ent()()(0,0,0,0);
double muc2 = star.get_ent2()()(0,0,0,0);
cout.precision (15);
if (muc1 != muc2)
cout << "\n!! WARNING !!: central chemical potentials differ..!!\n: mu1 = " << muc1 << "; mu2 = " << muc2 << endl;;
// get "raw" EOS parameters
kap1 = eos.get_kap1();
kap2 = eos.get_kap2();
kap3 = eos.get_kap3();
beta = eos.get_beta();
m1 = eos.get_m1();
m2 = eos.get_m2();
cout << "Raw EOS parameters: kappa1 = " << kap1 << " kappa2 = " << kap2;
cout << " kappa3 = " << kap3 << " beta = " << beta << endl;
// Central densities
double nn_c = star.get_nbar()()(0,0,0,0);
double np_c = star.get_nbar2()()(0,0,0,0);
nc = nn_c + np_c;
rhoc = m1 * nn_c + m2 * np_c;
// baryon densities in natural units
// Cmp nn = star.get_nbar()() / nc;
// Cmp np = star.get_nbar2()() / nc;
// translate EOS parameters into x_p, sigma and epsilon
detA = kap1*kap2 - kap3*kap3;
k1 = m1 * (kap2 - kap3) / detA;
k2 = m2 * (kap1 - kap3) / detA;
kk = m1*k1 + m2* k2;
R = M_PI /sqrt(qpig * kk) ; // analytic prediction
sigma = - kap3 / kap1;
if ( fabs(sigma) < 1e-9 ) sigma = 0;
eps = 2.0 * beta * nn_c / m2;
eps_n = 2.0 * beta * np_c / m1;
xp = k2 / (k1 + k2);
double xp_num = np_c / (nn_c + np_c) ;
cout << setprecision(9);
cout << "Translated EOS parameters: sigma = " << sigma << ", epsilon_c = " << eps << ", xp = " << xp << endl;
cout << "Central neutron density: " << nn_c << " rho_nuc" << endl;
cout << "Central proton density: " << np_c << " rho_nuc" << endl;
cout << "Central baryon density: " << nc << " rho_nuc" << endl;
double rel = 2* g_si * star.mass_b()*m_unit / (c_si*c_si * R * r_unit);
cout << "Relativity parameter: " << rel << endl;
double om0 = sqrt ( 4.0 * M_PI * g_si * rhoc * rho_unit );
cout << "Rotation-rate Unit: " << om0 << endl;
double om_n = star.get_omega_c() * f_unit / om0;
double om_p = star.get_omega2() * f_unit / om0;
cout << "Natural rotation rates: Om_n = " << om_n << "; Om_p = " << om_p << endl;
cout << "Analytic static radius: " << R << endl;
cout << "eps_p(0) = " << eps << " eps_n(0) = " << eps_n << endl;
if ( eps >= 1.0 || eps_n >= 1.0 )
cout << "*** WARNING **** negative effective masses if eps, eps_n >= 1 !! \n";
// ******************************
// now start with tests and output
cout << "Total mass of neutron-fluid: " << star.mass_b1() / msol << " Msol\n";
cout << "Total mass of proton-fluid: " << star.mass_b2() / msol << " Msol\n";
cout << "Total baryon mass: " << star.mass_b()/msol << "Msol\n";
// save some data about this configuration:
string fname;
// make sure Results-directory exists, otherwise create it:
DIR *thisdir;
if ( (thisdir = opendir(resdir)) == NULL)
if (mkdir (resdir, S_IREAD|S_IWRITE|S_IEXEC) == -1)
{
cout << "Failed to create results-dir: " << resdir << endl;
exit (-1);
}
closedir (thisdir);
// construct path+name for results-file
string path = resdir;
path += "/";
fname = path + get_file_base (star.is_relativistic(), xp, sigma, eps, om_n, om_p, eos.get_typeos(), star.get_nzet(), adapt);
const Map_radial *map = dynamic_cast<const Map_radial*>(&star.get_mp());
const Mg3d* mg = map->get_mg() ; // Multi-grid
//----------------------------------------------------------------------
// get radii at intermediate angle, ~pi/4
const Coord& theta = map->tet ;
int g = mg->get_nt(0)/2; // theta close to pi/4
double thetaI = (+theta)(0,0,g,0);
double RnI = map->val_r_jk(star.l_surf()(0,g), star.xi_surf()(0,g), g, 0);
double RpI = map->val_r_jk(star.l_surf2()(0,g), star.xi_surf2()(0,g), g, 0);
cout << "theta = " << thetaI << "; RnI = " << RnI << "; RpI = " << RpI << endl;
double mnat = rhoc * R * R * R;
//----------------------------------------------------------------------
// calculate magnitude of shift-vector = N^phi B r sin(th)
Cmp shiftMag = star.get_tnphi()(); // N^phi r sin(th)
shiftMag *= star.get_bbb()();
//----------------------------------------------------------------------
// calculate proper radii!
Cmp aaa = sqrt( star.get_a_car()()); // a = sqrt(a^2)
aaa.std_base_scal();
// ok, not too sure about the spectral inner workings of this, so we
// integrate this "by hand"... (i.e using GSL...)
double rmax;
double abserr;
size_t neval;
double RR_pol_n, RR_pol_p, RR_eq_n, RR_eq_p; // the proper radii
AofR_params params;
params.AofR = &aaa;
params.phi = 0;
gsl_function func_AofR;
func_AofR.function = AofR;
func_AofR.params = ¶ms;
// RR_pol_n
rmax = star.ray_pole(); /* upper limit of integration */
params.theta = 0; /* pole */
if (gsl_integration_qng (&func_AofR, 0, rmax, 0, 1e-7, &RR_pol_n, &abserr, &neval) )
{
cout << "Integration of proper radius RR_pol_n failed!" << endl;
exit (-1);
}
cout << "Proper-radius RR_pol_n = "<<RR_pol_n<< ", abserr= "<<abserr<<", neval= "<<neval <<endl;
// RR_pol_p
rmax = star.ray_pole2(); /* upper limit of integration */
params.theta = 0; /* pole */
if (gsl_integration_qng (&func_AofR, 0, rmax, 0, 1e-7, &RR_pol_p, &abserr, &neval) )
{
cout << "Integration of proper radius RR_pol_p failed!" << endl;
exit (-1);
}
cout << "Proper-radius RR_pol_p = "<<RR_pol_p<< ", abserr= "<<abserr<<", neval= "<<neval <<endl;
// RR_eq_n
rmax = star.ray_eq(); /* upper limit of integration */
params.theta = M_PI/2; /* equator */
if (gsl_integration_qng (&func_AofR, 0, rmax, 0, 1e-7, &RR_eq_n, &abserr, &neval) )
{
cout << "Integration of proper radius RR_eq_n failed!" << endl;
exit (-1);
}
cout << "Proper-radius RR_eq_n = "<<RR_eq_n<< ", abserr= "<<abserr<<", neval= "<<neval <<endl;
// RR_eq_p
rmax = star.ray_eq2(); /* upper limit of integration */
params.theta = M_PI/2; /* equator */
if (gsl_integration_qng (&func_AofR, 0, rmax, 0, 1e-7, &RR_eq_p, &abserr, &neval) )
{
cout << "Integration of proper radius RR_eq_p failed!" << endl;
exit (-1);
}
cout << "Proper-radius RR_eq_p = "<<RR_eq_p<< ", abserr= "<<abserr<<", neval= "<<neval <<endl;
cout << "Flattening of neutrons, r_pole/r_eq = " << RR_pol_n / RR_eq_n << endl;
cout << "Flattening of protons, r_pole/r_eq = " << RR_pol_p / RR_eq_p << endl;
//----------------------------------------------------------------------
std::ofstream data((fname+".d").c_str());
data << setprecision(17);
data << "# EOS and stellar parameters: \n";
data << "kappa1 = " << kap1 << endl;
data << "kappa2 = " << kap2 << endl;
data << "kappa3 = " << kap3 << endl;
data << "beta = " << beta << endl;
data << "muc_n = " << star.get_ent()()(0,0,0,0) << endl;
data << "muc_p = " << star.get_ent2()()(0,0,0,0) << endl;
data << "rhoc = " << nc << " rho_nuc" << endl;
data << "Om0 = " << om0 << endl;
data << "Relativity-parameter = " << rel << endl;
data << "\n# in natural units:\n";
data << "sigma = " << sigma << endl;
data << "epsilon = " << eps << endl;
data << "xp = " << xp << endl;
data << "xp_num = " << xp_num << endl;
data << "Om_n = " << om_n << endl;
data << "Om_p = " << om_p << endl;
data << "\n# Global stellar quantities:\n";
data << "Mn = " << star.mass_b1() / mnat << endl;
data << "Mp = " << star.mass_b2() / mnat << endl;
data << "Rn = " << star.ray_pole()/R << "\t" << star.ray_eq()/ R << endl;
data << "Rp = " << star.ray_pole2()/R << "\t" << star.ray_eq2()/ R << endl;
data << "\n# Intermediate radii: \n";
data << "thetaI = " << thetaI << endl;
data << "RXI = " << RnI/R << "\t" << RpI/R << endl;
data << "\n# Viriel identity violations:" << endl;
data << "GRV3 = " << star.grv3() << endl;
data << "GRV2 = " << star.grv2() << endl;
data << "\n# relativistic stuff in physical units: \n";
data << "Mbar_n = " << star.mass_b1() / msol << " Msol\n";
data << "Mbar_p = " << star.mass_b2() / msol << " Msol\n";
data << "Mbar = " << star.mass_b() / msol << " Msol\n";
data << "Mgrav = " << star.mass_g() / msol << " Msol\n";
data << "Rcirc_n = " << star.r_circ() * 10.0 << " km\n";
data << "Rcirc_p = " << star.r_circ2() * 10.0 << " km\n";
data << "lapse N(0) = " << star.get_nnn()()(0,0,0,0) << endl;
data << "lapse N(eq) = " << star.get_nnn()().va.val_point(0,1,M_PI/2,0) << endl;
data << "lapse N(pol) = " << star.get_nnn()().va.val_point(0,1,0, 0) << endl;
data << "|N^phi|(eq) = " << shiftMag.va.val_point(0,1,M_PI/2,0) << endl;
data << "RR_eq_n = " << RR_eq_n << endl;
data << "RR_pol_n = " << RR_pol_n << endl;
data << "RR_eq_p = " << RR_eq_p << endl;
data << "RR_pol_p = " << RR_pol_p << endl;
// in order to uniquely idenfity the run, we append the output of "calcul.d" to this file:
data << "\n======================================================================\n";
data << " Identification of the run: calcul.d\n";
data << "======================================================================\n";
data.close();
system(("cat calcul.d >> "+fname+".d").c_str()) ;
return;
} // compare_analytic
//----------------------------------------------------------------------
// function A(r) for numerical integration
double AofR (double r, void *params)
{
double res;
AofR_params *myparams = reinterpret_cast<AofR_params*>(params);
res = myparams->AofR->val_point( r, myparams->theta, myparams->phi);
return (res);
} /* AofR() */
//----------------------------------------------------------------------
/*----------------------------------------------------------------------
* get_file_base(): construct filename-base from EOS parameters
*
*----------------------------------------------------------------------*/
string
get_file_base (bool relat, double xp0, double sig0)
{
ostringstream s;
char cbuf[50]; // man, <ios> does not seem to exist here...
const char *head = relat ? "Rel" : "Newt" ;
sprintf (cbuf, "%s_xp%4.2f_sig%4.2f", head, xp0, sig0);
s << cbuf;
return (s.str());
}
string
get_file_base (bool relat, double xp0, double sig0, double eps0, double om1, double om2, int typeos, int nzet, int adapt)
{
ostringstream s;
char cbuf[50]; // man, <ios> does not seem to exist here...
double relOm;
if (om2 != 0)
relOm = (om1 - om2)/om2;
else
relOm = 0;
s << get_file_base (relat, xp0, sig0);
sprintf (cbuf, "_eps%4.2f_Om%8.6f_R%4.2f%s%s%s", eps0, om2, relOm,
(typeos==5)? "_sr" : "",
(nzet==2)? "_2dom" : "",
(adapt>0)? "_adapt" : "");
s << cbuf;
return (s.str());
}
|