File: test_poisson_div_free.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (183 lines) | stat: -rw-r--r-- 5,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// Lorene headers
#include "metric.h"
#include "cmp.h"
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"

using namespace Lorene ;

int main() {

	// Construction of a multi-grid (Mg3d)
	// -----------------------------------
  
	const int nz = 3 ; 	// Number of domains
	int nr =33 ; 	// Number of collocation points in r in each domain
	int nt = 5 ; 	// Number of collocation points in theta in each domain
	int np = 6 ; 	// Number of collocation points in phi in each domain
	int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
	int symmetry_phi = NONSYM ; // no symmetry in phi

	int nbr[] = {nr, nr , nr};
	int nbt[] = {nt, nt, nt} ;
	int nbp[] = {np, np, np} ;
	int tipe_r[] = {RARE, FIN, UNSURR} ;
  	assert( nz == 3 ) ;// since the above arrays are described in only 3 domains
	int nzm1 = nz - 1 ;
  
	Mg3d mgrid(nz, nbr, tipe_r, nbt, symmetry_theta, nbp, symmetry_phi) ;
	
  	// Construction of an affine mapping (Map_af)
  	// ------------------------------------------

	// Boundaries of each domains
	double r_limits[] = {0., 1., 2., __infinity} ; 
  
	Map_af map(mgrid, r_limits) ; 
  	

	// Construction of flat metrics
	// ----------------------------

	Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
	Metric_flat metc(map, map.get_bvect_cart()) ;  // Cartesian representation


	// Construction of a divergence free vector field 
	// ----------------------------------------------

	const Coord& r = map.r ; 
	Scalar sint(map), cost(map) ;
	sint = map.sint ;
	cost = map.cost ; 

	Scalar comp_l2 = 3*cost*cost - 1 ;
	comp_l2.std_spectral_base() ;

	Scalar num(map) ;
	num = 3 - r*r*r*r ;
	num.std_spectral_base() ;

 	Base_val ma_base(nz) ;
 	ma_base.set_base_r(0, R_CHEBPIM_I) ;
 	for (int i=1; i<nz-1; i++) 
 	  ma_base.set_base_r(i, R_CHEB) ;
 	ma_base.set_base_r(nz-1, R_CHEBU) ;
 	ma_base.set_base_t(T_COSSIN_CP) ;
 	ma_base.set_base_p(P_COSSIN) ;

	Mtbl denom0(mgrid) ;
	denom0 = 1/(r*r*r*r) ;
	Scalar unsur4(map) ;
	unsur4 = 1 / (1 + r*r*r*r) ;
	unsur4.annule_domain(nz-1) ;
	unsur4.std_spectral_base() ;

	Scalar la_zec(map) ;
	la_zec = 1 ;
	la_zec.annule(0,nz-2) ;
	la_zec.set_dzpuis(4) ;
	Scalar tmp(map) ;
	tmp = 1 / (1 + denom0) ;
	tmp.annule(0, nz-2) ;
	la_zec *= tmp ;
	unsur4 += la_zec ;
	
	Scalar rtrois(map), denom1(map), denom2(map), denom3(map) ;
	rtrois = r*r*r ;
	rtrois.set_spectral_base(ma_base) ;
	denom1 = 1 / (r*r*r*r + 1) ;
	denom1.std_spectral_base() ;
	denom2 = unsur4 * denom1 ;
	denom3 = denom2*denom1 ;
	Scalar denom4 = denom3*denom1 ;

	Vector vvs1(map, CON, map.get_bvect_spher()) ;
	vvs1.set(1) =  denom1 *comp_l2 ;
 	vvs1.set(1).set_outer_boundary(nzm1, 0) ;
	vvs1.set(1).mult_r() ;
 	vvs1.set(1).set_outer_boundary(nzm1, 0) ;
	vvs1.set(2) = - num*denom1*denom1 ;
	vvs1.set(2).set_outer_boundary(nzm1, 0) ;
	vvs1.set(2).mult_rsint() ;
	vvs1.set(2).mult_cost() ;
	vvs1.set(3) = -denom1 ;
	vvs1.set(3).set_outer_boundary(nzm1, 0) ;
	vvs1.set(3).mult_rsint() ;
	vvs1.set(3).set_outer_boundary(nzm1, 0) ;
	vvs1.std_spectral_base() ;

	Vector source_s(map, CON, map.get_bvect_spher()) ;
	source_s.set(1) = -(32 * denom3 + 4 * denom2)*rtrois*comp_l2 ; 
	source_s.set(1).set_outer_boundary(nzm1, 0) ;
	source_s.set(2) = ( 384 * denom4 - 192 * denom3 - 12 * denom2)*rtrois ; 
	source_s.set(2).set_outer_boundary(nzm1, 0) ;
	source_s.set(2).set_spectral_base(ma_base) ;
	source_s.set(2).mult_sint() ;
	source_s.set(2).mult_cost() ;
	source_s.set(3) = (32*denom3 - 4 * denom2) * rtrois ;
	source_s.set(3).set_outer_boundary(nzm1, 0) ;
	source_s.std_spectral_base() ;
	source_s.set(3).set_spectral_base(ma_base) ;
	source_s.set(3).mult_sint() ;

	cout << "Divergence of source : " << endl ;
 	cout << "---------------------- " << endl << endl ;
	source_s.divergence(mets).spectral_display(0x0, 1.e-12) ;
 	int sd ; cin >> sd ;

	Scalar pot_source = source_s.potential(mets) ;
 	cout << "Source potential: " << endl ;
 	cout << "----------------- " << endl << endl ;
 	pot_source.spectral_display(0x0, 1.e-13) ;
 	cin >> sd ;

	Vector_divfree source_df = source_s.div_free(mets) ;

 	cout << "Difference with the div_free part of the source : " << endl;
 	cout << "------------------------------------------------- " << endl << endl ;
 	Vector v_diff = source_df - source_s ;
	v_diff.dec_dzpuis(4) ;
 	v_diff.spectral_display(0x0, 1.e-13) ;
 	cout << endl ;
 	cin >> sd ;

	Vector_divfree sol_df = source_df.poisson() ;
	Vector diff_df = sol_df - vvs1 ;
	cout << "Difference with analytic solution: " << endl ;
	cout << "---------------------------------- " << endl ;
	for (int i=1; i<4; i++) 
	  cout << max(abs(diff_df(i))) << endl ;
	cout << endl ;

	Vector sol = sol_df ;
	cout << "Divergence of the solution : " << endl ;
	cout << "---------------------------- " << endl ;
	Scalar dive = sol.divergence(mets) ;
	dive.dec_dzpuis(2) ;
	dive.spectral_display(0x0, 1.e-12) ;

	Scalar eta_theo = num*denom1*denom1*comp_l2 / 6 ;
	eta_theo.std_spectral_base() ;
	eta_theo.set_outer_boundary(nzm1,0) ;
	eta_theo.mult_r() ;

	Scalar eta = sol_df.eta() ;
	cout << "Difference in eta : " << endl ;
	cout << "------------------- " << endl ;
	cout << max(abs(eta- eta_theo)) << endl ;

	Scalar mu_theo(map) ;
	mu_theo = denom1 ;
	mu_theo.set_outer_boundary(nzm1,0) ;
	mu_theo.mult_r() ;
	mu_theo.mult_cost() ;

	Scalar mu = sol_df.mu() ;
	cout << "Diffrence in mu: " << endl  ;
	cout << "------------------- " << endl ;
	cout << max(abs(mu - mu_theo)) << endl ;

	return EXIT_SUCCESS ; 
}