1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
* Test of the resolution of the vector Poisson equation
*
*/
/*
* Copyright (c) 2004 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char test_poisson_vect_C[] = "$Header: /cvsroot/Lorene/Codes/Test/Poisson_vect/test_poisson_vect.C,v 1.3 2014/10/13 08:54:02 j_novak Exp $" ;
/*
* $Id: test_poisson_vect.C,v 1.3 2014/10/13 08:54:02 j_novak Exp $
* $Log: test_poisson_vect.C,v $
* Revision 1.3 2014/10/13 08:54:02 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.2 2006/06/05 09:48:33 j_novak
* Using version 6 of the vector Poisson solver
*
* Revision 1.1 2004/02/22 15:48:49 j_novak
* New code for testing vector Poisson equation.
*
*
* $Header: /cvsroot/Lorene/Codes/Test/Poisson_vect/test_poisson_vect.C,v 1.3 2014/10/13 08:54:02 j_novak Exp $
*
*/
// Lorene headers
#include "metric.h"
#include "tenseur.h"
#include "nbr_spx.h"
#include "utilitaires.h"
using namespace Lorene ;
int main() {
// Construction of a multi-grid (Mg3d)
// -----------------------------------
const int nz = 3 ; // Number of domains
int nr = 33 ; // Number of collocation points in r in each domain
int nt = 5 ; // Number of collocation points in theta in each domain
int np = 6 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
int nbr[] = {nr, nr, nr};
int nbt[] = {nt, nt, nt} ;
int nbp[] = {np, np, np} ;
int tipe_r[] = {RARE, FIN, UNSURR} ;
assert( nz == 3 ) ;// since the above arrays are described in only 3 domains
Mg3d mgrid(nz, nbr, tipe_r, nbt, symmetry_theta, nbp, symmetry_phi) ;
int nzm1 = nz - 1 ;
// Construction of an affine mapping (Map_af)
// ------------------------------------------
double R = 2.1 ;
// Boundaries of each domains
double r_limits[] = {0., 0.5*R, R, __infinity} ;
Map_af map(mgrid, r_limits) ;
// Construction of flat metrics
// ----------------------------
Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
Metric_flat metc(map, map.get_bvect_cart()) ; // Cartesian representation
Scalar xx(map), yy(map), zz(map), rr(map) ;
xx = map.x ;
yy = map.y ;
zz = map.z ;
rr = map.r ;
double lamda = 1. ; //for the vector equation Delta V + lamda grad(div V)
int nn ;
cout << "Enter n : (source decaying like 1/r^n+4, so n>0 is required)"
<< endl ;
cin >> nn ;
Vector theo(map, CON, map.get_bvect_cart()) ;
Vector theo_zec(map, CON, map.get_bvect_cart()) ;
theo.set(1) = xx*rr*rr / (10 * (lamda+1) * pow(R, double(nn+5)))
- double(nn + 5) *xx /
(6 * (lamda + 1) * double(nn+3) * pow(R, double(nn+3))) ;
theo.set(1).annule_domain(nzm1) ;
theo_zec.set(1) = xx / ((lamda+1) * nn * (nn+3) * pow(rr, nn+3))
- (nn+5) * xx / ((lamda+1) * 15*nn * pow(R,double(nn)) * pow(rr,3)) ;
theo_zec.set(1).annule(0,nz-2) ;
theo.set(1) += theo_zec(1) ;
theo.set(1).set_outer_boundary(nz-1, 0.) ;
theo.set(2) = yy*rr*rr / (10 * (lamda+1) * pow(R, double(nn+5)))
- double(nn + 5) *yy / (6 * (lamda + 1) * double(nn+3) * pow(R, double(nn+3))) ;
theo.set(2).annule_domain(nzm1) ;
theo_zec.set(2) = yy / ((lamda+1) * nn * (nn+3) * pow(rr, nn+3))
- (nn+5) * yy / ((lamda+1) * 15*nn * pow(R,double(nn)) * pow(rr,3)) ;
theo_zec.set(2).annule(0,nz-2) ;
theo.set(2) += theo_zec(2) ;
theo.set(2).set_outer_boundary(nz-1, 0.) ;
theo.set(3) = zz*rr*rr / (10 * (lamda+1) * pow(R, double(nn+5)))
- double(nn + 5) *zz / (6 * (lamda + 1) * double(nn+3) * pow(R, double(nn+3))) ;
theo.set(3).annule_domain(nzm1) ;
theo_zec.set(3) = zz / ((lamda+1) * nn * (nn+3) * pow(rr, nn+3))
- (nn+5) * zz / ((lamda+1) * 15*nn * pow(R,double(nn)) * pow(rr,3)) ;
theo_zec.set(3).annule(0,nz-2) ;
theo.set(3) += theo_zec(3) ;
theo.set(3).set_outer_boundary(nz-1, 0.) ;
theo.std_spectral_base() ;
Vector source(map, CON, map.get_bvect_cart()) ;
Vector source_zec(map, CON, map.get_bvect_cart()) ;
source.set(1) = xx / pow(R, double(nn+5)) ;
source.set(1).annule_domain(nzm1) ;
source_zec.set(1) = xx / pow(rr, nn+1) ;
source_zec.set(1).set_dzpuis(4) ;
source_zec.set(1).annule(0, nz-2) ;
source.set(1) += source_zec(1) ;
source.set(1).set_outer_boundary(nz-1, 0.) ;
source.set(2) = yy / pow(R, double(nn+5)) ;
source.set(2).annule_domain(nzm1) ;
source_zec.set(2) = yy / pow(rr, nn+1) ;
source_zec.set(2).set_dzpuis(4) ;
source_zec.set(2).annule(0, nz-2) ;
source.set(2) += source_zec(2) ;
source.set(2).set_outer_boundary(nz-1, 0.) ;
source.set(3) = zz / pow(R, double(nn+5)) ;
source.set(3).annule_domain(nzm1) ;
source_zec.set(3) = zz / pow(rr, nn+1) ;
source_zec.set(3).set_dzpuis(4) ;
source_zec.set(3).annule(0, nz-2) ;
source.set(3) += source_zec(3) ;
source.set(3).set_outer_boundary(nz-1, 0.) ;
source.std_spectral_base() ;
Vector source_s = source ;
source_s.change_triad( map.get_bvect_spher() ) ;
Tenseur source_p(map, 1, CON, map.get_bvect_cart() ) ;
source_p.set_etat_qcq() ;
for (int i=0; i<3; i++) {
source_p.set(i) = Cmp(source(i+1)) ;
}
Tenseur vect_auxi (map, 1, CON, map.get_bvect_cart()) ;
vect_auxi.set_etat_qcq() ;
Tenseur scal_auxi (map) ;
scal_auxi.set_etat_qcq() ;
Tenseur resu_p(source_p.poisson_vect(lamda, vect_auxi, scal_auxi)) ;
Tenseur theo_p(map, 1, CON, map.get_bvect_cart()) ;
theo_p.set_etat_qcq() ;
for (int i=0; i<3; i++) {
theo_p.set(i) = Cmp(theo(i+1)) ;
}
Vector resus = source_s.poisson(lamda, mets,6) ;
Vector resu = resus ;
resu.change_triad(map.get_bvect_cart() ) ;
cout << "Max of relative difference (in cartesian components): " << endl ;
for (int i=1; i<=3; i++) {
cout << "Component " << i << ": " << endl ;
cout << "New version: " << diffrelmax(resu(i), theo(i)) << endl ;
cout << "Grandclement et al.: " <<
diffrelmax(resu_p(i-1), theo_p(i-1)) << endl ;
}
return EXIT_SUCCESS ;
}
|