File: sol_coloc.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (177 lines) | stat: -rw-r--r-- 4,163 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include "headcpp.h"
#include "math.h"

#include "tbl.h"
#include "matrice.h"
#include "cheby.h"

double f_source (double x) {
	static double constante = -4*exp(1.)/(1+exp(1.)*exp(1.)) ;
	return constante + exp(x) ;
}

double f_solution (double x) {
	static double constante = -4*exp(1.)/(1+exp(1.)*exp(1.)) ;
	return exp(x) - sinh(1.)/sinh(2.)*exp(2*x) + constante/4 ;
}


		//*******************
		// First derivative
		//*******************
Tbl ope_der (const Tbl& so) {
	// Verification of size :
	assert (so.get_ndim() == 1) ;
	int size = so.get_dim(0) ;
	
	// The result is set to zero
	Tbl res (size) ;
	res.annule_hard() ;
	
	// the computation
	for (int n=0 ; n<size ; n++)
	     for (int p=n+1 ; p<size ; p++)
		if ((p+n)%2 == 1)
			res.set(n) += p*so(p)*2 ;
	
	// Normalisation of the first coef :
	res.set(0) /= 2. ;
	
	return res ;
}
		//*******************
		// Second derivative
		//*******************
Tbl ope_der_sec (const Tbl& so) {
	// Verification of size :
	assert (so.get_ndim() == 1) ;
	int size = so.get_dim(0) ;
	
	// The result is set to zero
	Tbl res (size) ;
	res.annule_hard() ;
	
	// the computation
	for (int n=0 ; n<size ; n++)
	     for (int p=n+2 ; p<size ; p++)
		if ((p+n)%2 == 0)
			res.set(n) += p*(p*p-n*n)*so(p) ;
	
	// Normalisation of the first coef :
	res.set(0) /= 2. ;
	
	return res ;
}

		//*******************
		//    The operator
		//*******************

Matrice matrix_ope (int n) {

	// The result :
	Matrice res(n,n) ;
	res.set_etat_qcq() ;
	
	// Work arrays :
	Tbl so (n) ;
	Tbl d_so (n) ;
	Tbl dd_so (n) ;
	
	// Column by column :
	for (int col=0 ; col<n ; col++) {
		so.annule_hard() ;
		so.set(col) = 1 ;
		
		// The derivatives
		d_so = ope_der(so) ;
		dd_so = ope_der_sec(so) ;
		
		// Put in the matrix :
		for (int line=0 ; line<n ; line++)
		    res.set(line, col) = dd_so(line) -4*d_so(line) + 4*so(line) ;
	}

	return res ;
}

int main () {

	int nr ;
	cout << "Please enter the number of coefficients :" << endl ;
	cin >> nr ;
	
	cout << "The operator matrix is " << endl ;
	Matrice operator_mat (matrix_ope(nr)) ;
	cout << operator_mat << endl ;
	
	// Resolution with a collocation method :
	Matrice systeme(nr, nr) ;
	systeme.annule_hard() ;
	// Boundary conditions are inforced by additional equations:	
	// Left boundary condition :
	for (int i=0 ; i<nr ; i++)
	    systeme.set(0, i) = (i%2==0) ? 1 : -1 ;
	// Right boundary condition :
	for (int i=0 ; i<nr ; i++)
	    systeme.set(nr-1, i) = 1 ;
	// The rest of the equations :
	Tbl colocation(coloc_cheb(nr)) ;
	for (int n=1 ; n<nr-1 ; n++)
	    for (int k=0 ; k<nr ; k++)
	         for (int j=0 ; j<nr ; j++)
	        	systeme.set(n,k) += operator_mat(j, k) * cheby(j, colocation(n)) ;
	systeme.set_lu() ;
		
	cout << "The colocation matrix is" << endl ;
	cout << systeme << endl ;
	
	// Second member of the system :
	Tbl sec_member (nr) ;
	sec_member.set_etat_qcq() ;
	// Boundary conditions :
	sec_member.set(0) = 0 ;
	sec_member.set(nr-1) = 0 ;
	// Coefficients of the source :
	for (int i=1 ; i<nr-1 ; i++)
	    sec_member.set(i) = f_source(colocation(i)) ;
	
	cout << "Second member for the colocation system" << endl ;
	cout << sec_member << endl ;   
	
	// The system is inverted :
	Tbl coef_sol (systeme.inverse(sec_member)) ;
	    
	cout << "Coefficients of the solution : " << endl ;
	cout << coef_sol << endl ;
	
	// Output in a file for plotting purposes :
	char name_out[30] ;
	sprintf(name_out, "plot_tau_%i.dat", nr) ;
	ofstream fiche (name_out) ;
	
	int resolution = 200 ;
	double x=-1 ;
	double step = 2./resolution ;
	
	// We will also compute the maximum difference between the solution and its numerical value :
	double error_max = 0 ;
	
	for (int i=0 ;  i<resolution+1 ; i++)  {
	    // One computes the solution at the current point
	    double val_func = 0 ;
	    for (int j=0 ; j<nr ; j++)
	         val_func += coef_sol(j)*cheby(j, x) ;
	   fiche << x << " " << val_func << " " << f_solution(x) << endl ;
	   double error = fabs(val_func-f_solution(x)) ;
	   if (error > error_max)
	        error_max = error ;
	   
	   x += step ;
	}
	
	cout << "Error max : " << endl ;
	cout << error_max << endl ;
	
	return 0 ;
}