1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#include "headcpp.h"
#include "math.h"
#include "tbl.h"
#include "matrice.h"
#include "cheby.h"
double f_left (double) {
return 1. ;
}
double f_right (double) {
return 0. ;
}
double f_source (double x) {
if (x<0)
return 1. ;
else
if (x>0) return 0. ;
else
return 0.5 ;
}
double f_solution (double x) {
double ee = exp(1.) ;
static double bmoins = -1./8./(1+ee*ee) - ee*ee/8./(1+ee*ee*ee*ee) ;
static double bplus = ee*ee*ee*ee/8.*(ee*ee/(1+ee*ee*ee*ee)-1./(1+ee*ee)) ;
if (x<0)
return 0.25 -(ee*ee/4.+bmoins*ee*ee*ee*ee)*exp(2*x)
+ bmoins*exp(-2*x) ;
else
return bplus*(exp(-2*x)-exp(2*x)/ee/ee/ee/ee) ;
}
//*******************
// First derivative
//*******************
Tbl ope_der (const Tbl& so) {
// Verification of size :
assert (so.get_ndim() == 1) ;
int size = so.get_dim(0) ;
// The result is set to zero
Tbl res (size) ;
res.annule_hard() ;
// the computation
for (int n=0 ; n<size ; n++)
for (int p=n+1 ; p<size ; p++)
if ((p+n)%2 == 1)
res.set(n) += p*so(p)*2 ;
// Normalisation of the first coef :
res.set(0) /= 2. ;
return res ;
}
//*******************
// Second derivative
//*******************
Tbl ope_der_sec (const Tbl& so) {
// Verification of size :
assert (so.get_ndim() == 1) ;
int size = so.get_dim(0) ;
// The result is set to zero
Tbl res (size) ;
res.annule_hard() ;
// the computation
for (int n=0 ; n<size ; n++)
for (int p=n+2 ; p<size ; p++)
if ((p+n)%2 == 0)
res.set(n) += p*(p*p-n*n)*so(p) ;
// Normalisation of the first coef :
res.set(0) /= 2. ;
return res ;
}
//**************************************
// The operator (multi domain case)
//**************************************
Matrice multi_ope (int n) {
// The result :
Matrice res(n,n) ;
res.set_etat_qcq() ;
// Work arrays :
Tbl so (n) ;
Tbl dd_so (n) ;
// Column by column :
for (int col=0 ; col<n ; col++) {
so.annule_hard() ;
so.set(col) = 1 ;
// The derivative
dd_so = ope_der_sec(so) ;
// Put in the matrix :
for (int line=0 ; line<n ; line++)
res.set(line, col) = -4*dd_so(line) + 4*so(line) ;
}
return res ;
}
int main () {
int nr ;
cout << "Please enter the number of coefficients :" << endl ;
cin >> nr ;
cout << "The operator matrix is " << endl ;
Matrice operator_mat (multi_ope(nr)) ;
cout << operator_mat << endl ;
// The non degenerare operator :
Matrice nondege (nr-2, nr-2) ;
nondege.set_etat_qcq() ;
for (int lig=0 ; lig<nr-2 ; lig++)
for (int col=0 ; col<nr-2 ; col++)
nondege.set(lig, col) = operator_mat(lig, col+2) ;
nondege.set_lu() ;
cout << "The inverted matrix is :" << endl ;
cout << nondege << endl ;
// Computation of the particular solution on the left :
Tbl colocation(coloc_cheb(nr)) ;
Tbl so_left (nr) ;
so_left.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
so_left.set(i) = f_left (0.5*(colocation(i)-1)) ;
Tbl coef_so_left (coef_cheb(so_left)) ;
cout << "Coefficients of the source on the left : " << endl ;
cout << coef_so_left << endl ;
Tbl auxi_so_left (nr-2) ;
auxi_so_left.set_etat_qcq() ;
for (int i=0 ; i<nr-2 ; i++)
auxi_so_left.set(i) = coef_so_left(i) ;
Tbl inv_left (nondege.inverse(auxi_so_left)) ;
Tbl sp_left (nr) ;
sp_left.set_etat_qcq() ;
sp_left.set(0) = 0 ;
sp_left.set(1) = 0 ;
for (int i=0 ; i<nr-2 ; i++)
sp_left.set(i+2) = inv_left(i) ;
cout << "Particular solution on the left :" << endl ;
cout << sp_left << endl ;
// Computation of the particular solution on the right :
Tbl so_right (nr) ;
so_right.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
so_right.set(i) = f_right (0.5*(colocation(i)+1)) ;
Tbl coef_so_right (coef_cheb(so_right)) ;
cout << "Coefficients of the source on the right : " << endl ;
cout << coef_so_right << endl ;
Tbl auxi_so_right (nr-2) ;
auxi_so_right.set_etat_qcq() ;
for (int i=0 ; i<nr-2 ; i++)
auxi_so_right.set(i) = coef_so_right(i) ;
Tbl inv_right (nondege.inverse(auxi_so_right)) ;
Tbl sp_right (nr) ;
sp_right.set_etat_qcq() ;
sp_right.set(0) = 0 ;
sp_right.set(1) = 0 ;
for (int i=0 ; i<nr-2 ; i++)
sp_right.set(i+2) = inv_right(i) ;
cout << "Particular solution on the right :" << endl ;
cout << sp_right << endl ;
// Computation of the homogeneous solutions :
Tbl val_sh_plus_left (nr) ;
val_sh_plus_left.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
val_sh_plus_left.set(i) = exp(colocation(i)-1) ;
Tbl coef_sh_plus_left (coef_cheb(val_sh_plus_left)) ;
Tbl val_sh_moins_left (nr) ;
val_sh_moins_left.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
val_sh_moins_left.set(i) = exp(-colocation(i)+1) ;
Tbl coef_sh_moins_left (coef_cheb(val_sh_moins_left)) ;
Tbl val_sh_plus_right (nr) ;
val_sh_plus_right.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
val_sh_plus_right.set(i) = exp(colocation(i)+1) ;
Tbl coef_sh_plus_right (coef_cheb(val_sh_plus_right)) ;
Tbl val_sh_moins_right (nr) ;
val_sh_moins_right.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
val_sh_moins_right.set(i) = exp(-colocation(i)-1) ;
Tbl coef_sh_moins_right (coef_cheb(val_sh_moins_right)) ;
cout << "Various homogeneous solutions : " << endl ;
cout << coef_sh_plus_left << endl ;
cout << coef_sh_moins_left << endl ;
cout << coef_sh_plus_right << endl ;
cout << coef_sh_moins_right << endl ;
// Construction of the matching matrix :
Matrice matching (4,4) ;
matching.annule_hard() ;
// Boundary condition on the left :
matching.set(0,0) = exp(2.) ;
matching.set(0,1) = exp(-2.) ;
// matching of the solution accross the boundary :
matching.set(1,0) = 1 ;
matching.set(1,1) = 1 ;
matching.set(1,2) = -1 ;
matching.set(1,3) = -1 ;
// matching of the first derivative :
matching.set(2,0) = 1 ;
matching.set(2,1) = -1 ;
matching.set(2,2) = 1 ;
matching.set(2,3) = -1 ;
// boundary on the right :
matching.set(3,2) = exp(2.) ;
matching.set(3,3) = exp(-2.) ;
matching.set_lu() ;
cout << "Matching matrix :" << endl ;
cout << matching << endl ;
// Second member for the matching matrix :
Tbl sec_member (4) ;
sec_member.annule_hard() ;
// Boundary on the left :
for (int i=0 ; i<nr ; i++)
sec_member.set(0) += (i%2==0) ? -sp_left(i) : sp_left(i) ;
// Matching :
for (int i=0 ; i<nr ; i++)
sec_member.set(1) += (i%2==0) ? -sp_left(i)-sp_right(i) : -sp_left(i)+sp_right(i) ;
// Matching of the derivative :
for (int i=0 ; i<nr ; i++)
sec_member.set(2) += (i%2==0) ? i*i*(sp_left(i)+sp_right(i)) : i*i*(sp_left(i)-sp_right(i)) ;
//Boundary on the right :
for (int i=0 ; i<nr ; i++)
sec_member.set(3) -= sp_right(i) ;
cout << "Second member of the matching system: " << endl ;
cout << sec_member << endl ;
Tbl coef_sh (matching.inverse(sec_member)) ;
cout << "Coefficients of the homogeneous solutions :" << endl ;
cout << coef_sh << endl ;
// Coefficients of the result :
Tbl res_left (sp_left + coef_sh(0) * coef_sh_moins_left + coef_sh(1) * coef_sh_plus_left) ;
Tbl res_right (sp_right + coef_sh(2) * coef_sh_plus_right + coef_sh(3) * coef_sh_moins_right) ;
cout << "Coefficients of the solution : " << endl ;
cout << res_left << endl ;
cout << res_right << endl ;
// Output in a file for plotting purposes :
char name_out[30] ;
sprintf(name_out, "plot_multi_homogeneous_%i.dat", nr) ;
ofstream fiche (name_out) ;
int resolution = 200 ;
double x=-1 ;
double step = 2./resolution ;
// We will also compute the maximum difference between the solution and its numerical value :
double error_max = 0 ;
double xi ;
for (int i=0 ; i<resolution+1 ; i++) {
// in which domain ?
if (x<0)
xi = 2*x+1 ;
else
xi = 2*x-1 ;
// One computes the solution at the current point
double val_func = 0 ;
for (int j=0 ; j<nr ; j++)
if (x<0)
val_func += res_left(j)*cheby(j, xi) ;
else
val_func += res_right(j)*cheby(j, xi) ;
fiche << x << " " << val_func << " " << f_solution(x) << endl ;
double error = fabs(val_func-f_solution(x)) ;
if (error > error_max)
error_max = error ;
x += step ;
}
cout << "Error max : " << endl ;
cout << error_max << endl ;
return 0 ;
}
|