File: sol_multi_homogeneous.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (311 lines) | stat: -rw-r--r-- 8,277 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include "headcpp.h"
#include "math.h"

#include "tbl.h"
#include "matrice.h"
#include "cheby.h"

double f_left (double) {
	return 1. ;
}

double f_right (double) {
	return 0. ;
}

double f_source (double x) {
	if (x<0)
	    return 1. ;
	else 
	   if (x>0) return 0. ;
	   else
	      return 0.5 ;
}

double f_solution (double x) {
	double ee = exp(1.) ;
	static double bmoins = -1./8./(1+ee*ee) - ee*ee/8./(1+ee*ee*ee*ee) ;
	static double bplus = ee*ee*ee*ee/8.*(ee*ee/(1+ee*ee*ee*ee)-1./(1+ee*ee)) ;
	
	if (x<0)
	    return 0.25 -(ee*ee/4.+bmoins*ee*ee*ee*ee)*exp(2*x)
	 		+ bmoins*exp(-2*x) ;
	else
	    return bplus*(exp(-2*x)-exp(2*x)/ee/ee/ee/ee) ;
}

		//*******************
		// First derivative
		//*******************
Tbl ope_der (const Tbl& so) {
	// Verification of size :
	assert (so.get_ndim() == 1) ;
	int size = so.get_dim(0) ;
	
	// The result is set to zero
	Tbl res (size) ;
	res.annule_hard() ;
	
	// the computation
	for (int n=0 ; n<size ; n++)
	     for (int p=n+1 ; p<size ; p++)
		if ((p+n)%2 == 1)
			res.set(n) += p*so(p)*2 ;
	
	// Normalisation of the first coef :
	res.set(0) /= 2. ;
	
	return res ;
}
		//*******************
		// Second derivative
		//*******************
Tbl ope_der_sec (const Tbl& so) {
	// Verification of size :
	assert (so.get_ndim() == 1) ;
	int size = so.get_dim(0) ;
	
	// The result is set to zero
	Tbl res (size) ;
	res.annule_hard() ;
	
	// the computation
	for (int n=0 ; n<size ; n++)
	     for (int p=n+2 ; p<size ; p++)
		if ((p+n)%2 == 0)
			res.set(n) += p*(p*p-n*n)*so(p) ;
	
	// Normalisation of the first coef :
	res.set(0) /= 2. ;
	
	return res ;
}

		//**************************************
		//    The operator (multi domain case)
		//**************************************

Matrice multi_ope (int n) {

	// The result :
	Matrice res(n,n) ;
	res.set_etat_qcq() ;
	
	// Work arrays :
	Tbl so (n) ;
	Tbl dd_so (n) ;
	
	// Column by column :
	for (int col=0 ; col<n ; col++) {
		so.annule_hard() ;
		so.set(col) = 1 ;
		
		// The derivative
		dd_so = ope_der_sec(so) ;
		
		// Put in the matrix :
		for (int line=0 ; line<n ; line++)
		    res.set(line, col) = -4*dd_so(line) + 4*so(line) ;
	}

	return res ;
}

int main () {

	int nr ;
	cout << "Please enter the number of coefficients :" << endl ;
	cin >> nr ;
	
	cout << "The operator matrix is " << endl ;
	Matrice operator_mat (multi_ope(nr)) ;
	cout << operator_mat << endl ;
	
	// The non degenerare operator :
	Matrice nondege (nr-2, nr-2) ;
	nondege.set_etat_qcq() ;
	for (int lig=0 ; lig<nr-2 ; lig++)
	    for (int col=0 ; col<nr-2 ; col++)
	         nondege.set(lig, col) = operator_mat(lig, col+2) ;
	nondege.set_lu() ;
	cout << "The inverted matrix is :" << endl ;
	cout << nondege << endl ;
	
	// Computation of the particular solution on the left :
	Tbl colocation(coloc_cheb(nr)) ;
	Tbl so_left (nr) ;
	so_left.set_etat_qcq() ;
	for (int i=0 ; i<nr ; i++)
	     so_left.set(i) = f_left (0.5*(colocation(i)-1)) ;
	Tbl coef_so_left (coef_cheb(so_left)) ;
	
	cout << "Coefficients of the source on the left : " << endl ;	
	cout << coef_so_left << endl ;
	
	Tbl auxi_so_left (nr-2) ;
	auxi_so_left.set_etat_qcq() ;
	for (int i=0 ; i<nr-2 ; i++)
		auxi_so_left.set(i) = coef_so_left(i) ;
	Tbl inv_left (nondege.inverse(auxi_so_left)) ;
	Tbl sp_left (nr) ;
	sp_left.set_etat_qcq() ;
	sp_left.set(0) = 0 ;
	sp_left.set(1) = 0 ;
	for (int i=0 ; i<nr-2 ; i++)
	    sp_left.set(i+2) = inv_left(i) ;
	 
	cout << "Particular solution on the left :" << endl ;
	cout << sp_left << endl ;
	
	// Computation of the particular solution on the right :
	Tbl so_right (nr) ;
	so_right.set_etat_qcq() ;
	for (int i=0 ; i<nr ; i++)
	     so_right.set(i) = f_right (0.5*(colocation(i)+1)) ;
	Tbl coef_so_right (coef_cheb(so_right)) ;
	
	cout << "Coefficients of the source on the right : " << endl ;	
	cout << coef_so_right << endl ;
	
	Tbl auxi_so_right (nr-2) ;
	auxi_so_right.set_etat_qcq() ;
	for (int i=0 ; i<nr-2 ; i++)
		auxi_so_right.set(i) = coef_so_right(i) ;
	Tbl inv_right (nondege.inverse(auxi_so_right)) ;
	Tbl sp_right (nr) ;
	sp_right.set_etat_qcq() ;
	sp_right.set(0) = 0 ;
	sp_right.set(1) = 0 ;
	for (int i=0 ; i<nr-2 ; i++)
	    sp_right.set(i+2) = inv_right(i) ;
	 
	cout << "Particular solution on the right :" << endl ;
	cout << sp_right << endl ;
	
	// Computation of the homogeneous solutions :
	Tbl val_sh_plus_left (nr) ;
	val_sh_plus_left.set_etat_qcq() ;
	for (int i=0 ; i<nr ; i++)
	     val_sh_plus_left.set(i) = exp(colocation(i)-1) ;
	 Tbl coef_sh_plus_left (coef_cheb(val_sh_plus_left)) ;
	 
	 Tbl val_sh_moins_left (nr) ;
	 val_sh_moins_left.set_etat_qcq() ;
	for (int i=0 ; i<nr ; i++)
	     val_sh_moins_left.set(i) = exp(-colocation(i)+1) ;
	 Tbl coef_sh_moins_left (coef_cheb(val_sh_moins_left)) ;
	 
	Tbl val_sh_plus_right (nr) ;
	val_sh_plus_right.set_etat_qcq() ;
	for (int i=0 ; i<nr ; i++)
	     val_sh_plus_right.set(i) = exp(colocation(i)+1) ;
	 Tbl coef_sh_plus_right (coef_cheb(val_sh_plus_right)) ;
	 
	 Tbl val_sh_moins_right (nr) ;
	 val_sh_moins_right.set_etat_qcq() ;
	 for (int i=0 ; i<nr ; i++)
	     val_sh_moins_right.set(i) = exp(-colocation(i)-1) ;
	 Tbl coef_sh_moins_right (coef_cheb(val_sh_moins_right)) ;
	 
	 cout << "Various homogeneous solutions : " << endl ;
	 cout << coef_sh_plus_left << endl ;
	 cout << coef_sh_moins_left << endl ;
	 cout << coef_sh_plus_right << endl ;
	 cout << coef_sh_moins_right << endl ;
	 
	 // Construction of the matching matrix :
	 Matrice matching (4,4) ;
	 matching.annule_hard() ;
	 // Boundary condition on the left :
	 matching.set(0,0) = exp(2.) ;
	 matching.set(0,1) = exp(-2.) ;
	 // matching of the solution accross the boundary :
	 matching.set(1,0) = 1 ;
	 matching.set(1,1) = 1 ;
	 matching.set(1,2) = -1 ;
	 matching.set(1,3) = -1 ; 
	// matching of the first derivative :
	matching.set(2,0) = 1 ;
	matching.set(2,1) = -1 ;
	matching.set(2,2) = 1 ;
	matching.set(2,3) = -1 ;
	// boundary on the right :
	matching.set(3,2) = exp(2.) ;
	matching.set(3,3) = exp(-2.) ;
	
	matching.set_lu() ;
	cout << "Matching matrix :" << endl ;
	cout << matching << endl ;
	
	// Second member for the matching matrix :
	Tbl sec_member (4) ;
	sec_member.annule_hard() ;
	// Boundary on the left :
	for (int i=0 ; i<nr ; i++)
	     sec_member.set(0) += (i%2==0) ? -sp_left(i) : sp_left(i) ;
	// Matching :
	for (int i=0 ; i<nr ; i++)
	     sec_member.set(1) += (i%2==0) ? -sp_left(i)-sp_right(i)  : -sp_left(i)+sp_right(i) ;
	// Matching of the derivative :
	for (int i=0 ; i<nr ; i++)
	     sec_member.set(2) += (i%2==0) ? i*i*(sp_left(i)+sp_right(i))  : i*i*(sp_left(i)-sp_right(i)) ;
	//Boundary on the right :
	for (int i=0 ; i<nr ; i++)
	     sec_member.set(3) -= sp_right(i) ;
	     
	cout << "Second member of the matching system: " << endl ;
	cout << sec_member << endl ;
	
	Tbl coef_sh (matching.inverse(sec_member)) ;
	cout << "Coefficients of the homogeneous solutions :" << endl ;
	cout << coef_sh << endl ;
	 
	// Coefficients of the result :
	Tbl res_left (sp_left + coef_sh(0) * coef_sh_moins_left + coef_sh(1) * coef_sh_plus_left) ;
	Tbl res_right (sp_right + coef_sh(2) * coef_sh_plus_right + coef_sh(3) * coef_sh_moins_right) ;
	
	cout << "Coefficients of the solution : " << endl ;
	cout << res_left << endl ;
	cout << res_right << endl ;
	
	// Output in a file for plotting purposes :
	char name_out[30] ;
	sprintf(name_out, "plot_multi_homogeneous_%i.dat", nr) ;
	ofstream fiche (name_out) ;
	
	int resolution = 200 ;
	double x=-1 ;
	double step = 2./resolution ;
	
	// We will also compute the maximum difference between the solution and its numerical value :
	double error_max = 0 ;
	
	double xi ;
	for (int i=0 ;  i<resolution+1 ; i++)  {
	
	    // in which domain ?
	    if (x<0)
		xi = 2*x+1 ;
	    else
		xi = 2*x-1 ;
	    
	    // One computes the solution at the current point
	    double val_func = 0 ;
	    for (int j=0 ; j<nr ; j++)
	         if (x<0)
	              val_func += res_left(j)*cheby(j, xi) ;
		 else
		      val_func += res_right(j)*cheby(j, xi) ;
	   fiche << x << " " << val_func << " " << f_solution(x) << endl ;
	   double error = fabs(val_func-f_solution(x)) ;
	   if (error > error_max)
	        error_max = error ;
	   
	   x += step ;
	}
	
	cout << "Error max : " << endl ;
	cout << error_max << endl ;
	
	return 0 ;
}