1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#include "headcpp.h"
#include "math.h"
#include "tbl.h"
#include "matrice.h"
#include "cheby.h"
double f_left (double) {
return 1. ;
}
double f_right (double) {
return 0. ;
}
double f_source (double x) {
if (x<0)
return 1. ;
else
if (x>0) return 0. ;
else
return 0.5 ;
}
double f_solution (double x) {
double ee = exp(1.) ;
static double bmoins = -1./8./(1+ee*ee) - ee*ee/8./(1+ee*ee*ee*ee) ;
static double bplus = ee*ee*ee*ee/8.*(ee*ee/(1+ee*ee*ee*ee)-1./(1+ee*ee)) ;
if (x<0)
return 0.25 -(ee*ee/4.+bmoins*ee*ee*ee*ee)*exp(2*x)
+ bmoins*exp(-2*x) ;
else
return bplus*(exp(-2*x)-exp(2*x)/ee/ee/ee/ee) ;
}
//*******************
// First derivative
//*******************
Tbl ope_der (const Tbl& so) {
// Verification of size :
assert (so.get_ndim() == 1) ;
int size = so.get_dim(0) ;
// The result is set to zero
Tbl res (size) ;
res.annule_hard() ;
// the computation
for (int n=0 ; n<size ; n++)
for (int p=n+1 ; p<size ; p++)
if ((p+n)%2 == 1)
res.set(n) += p*so(p)*2 ;
// Normalisation of the first coef :
res.set(0) /= 2. ;
return res ;
}
//*******************
// Second derivative
//*******************
Tbl ope_der_sec (const Tbl& so) {
// Verification of size :
assert (so.get_ndim() == 1) ;
int size = so.get_dim(0) ;
// The result is set to zero
Tbl res (size) ;
res.annule_hard() ;
// the computation
for (int n=0 ; n<size ; n++)
for (int p=n+2 ; p<size ; p++)
if ((p+n)%2 == 0)
res.set(n) += p*(p*p-n*n)*so(p) ;
// Normalisation of the first coef :
res.set(0) /= 2. ;
return res ;
}
//**************************************
// The operator (multi domain case)
//**************************************
Matrice multi_ope (int n) {
// The result :
Matrice res(n,n) ;
res.set_etat_qcq() ;
// Work arrays :
Tbl so (n) ;
Tbl dd_so (n) ;
// Column by column :
for (int col=0 ; col<n ; col++) {
so.annule_hard() ;
so.set(col) = 1 ;
// The derivative
dd_so = ope_der_sec(so) ;
// Put in the matrix :
for (int line=0 ; line<n ; line++)
res.set(line, col) = -4*dd_so(line) + 4*so(line) ;
}
return res ;
}
int main () {
int nr ;
cout << "Please enter the number of coefficients :" << endl ;
cin >> nr ;
cout << "The operator matrix is " << endl ;
Matrice operator_mat (multi_ope(nr)) ;
cout << operator_mat << endl ;
// Resolution with a tau method :
Matrice systeme(nr*2, nr*2) ;
systeme.annule_hard() ;
// Boundary conditions are inforced by additional equations:
// Left boundary condition :
for (int i=0 ; i<nr ; i++)
systeme.set(0, i) = (i%2==0) ? 1 : -1 ;
// Equation in the first domain :
for (int i=0 ; i<nr-2 ; i++)
for (int j=0 ; j<nr ; j++)
systeme.set(i+1,j) = operator_mat(i,j) ;
// Continuity of the solution :
for (int i=0 ; i<nr ; i++)
systeme.set(nr-1, i) = 1 ;
for (int i=0 ; i<nr ; i++)
systeme.set(nr-1, i+nr) = (i%2==0) ? -1 : 1 ;
// Continuity of the first derivative :
for (int i=0 ; i<nr ; i++)
systeme.set(nr, i) = i*i ;
for (int i=0 ; i<nr ; i++)
systeme.set(nr, i+nr) = (i%2==0) ? i*i : -i*i ;
// Equation in the second domain :
for (int i=0 ; i<nr-2 ; i++)
for (int j=0 ; j<nr ; j++)
systeme.set(i+1+nr,j+nr) = operator_mat(i,j) ;
// Right boundary condition :
for (int i=0 ; i<nr ; i++)
systeme.set(2*nr-1, i+nr) = 1 ;
systeme.set_lu() ;
cout << "Multi-domain systeme of equations :" << endl ;
cout << systeme << endl ;
// Coeficients of the source :
// left hand side :
Tbl conf (nr) ;
conf.set_etat_qcq() ;
Tbl colocation(coloc_cheb(nr)) ;
for (int i=0 ; i<nr ; i++)
conf.set(i) = f_left(0.5*(colocation(i)-1)) ;
Tbl coefs_left (coef_cheb(conf)) ;
for (int i=0 ; i<nr ; i++)
conf.set(i) = f_right(0.5*(colocation(i)+1)) ;
Tbl coefs_right (coef_cheb(conf)) ;
cout << "Coefficients of the source, left and right" << endl ;
cout << coefs_left << endl ;
cout << coefs_right << endl ;
// Second member of the system :
Tbl sec_member (2*nr) ;
sec_member.set_etat_qcq() ;
// Leftoundary conditions :
sec_member.set(0) = 0 ;
// Source on the left:
for (int i=1 ; i<nr-1 ; i++)
sec_member.set(i) = coefs_left(i-1) ;
// continuity of the function :
sec_member.set(nr-1) = 0 ;
// continuity of the first derivative :
sec_member.set(nr) = 0 ;
// Source on the right:
for (int i=1 ; i<nr-1 ; i++)
sec_member.set(i+nr) = coefs_right(i-1) ;
// Right boundary condition :
sec_member.set(2*nr-1) = 0 ;
cout << "Second member for the multi-domain system" << endl ;
cout << sec_member << endl ;
// The system is inverted :
Tbl coef_sol (systeme.inverse(sec_member)) ;
cout << "Coefficients of the solution : " << endl ;
cout << coef_sol << endl ;
// Output in a file for plotting purposes :
char name_out[30] ;
sprintf(name_out, "plot_multi_tau_%i.dat", nr) ;
ofstream fiche (name_out) ;
int resolution = 200 ;
double x=-1 ;
double step = 2./resolution ;
// We will also compute the maximum difference between the solution and its numerical value :
double error_max = 0 ;
double xi ;
int offset ;
for (int i=0 ; i<resolution+1 ; i++) {
// in which domain ?
if (x<0) {
offset=0 ;
xi = 2*x+1 ;
}
else {
offset=nr ;
xi = 2*x-1 ;
}
// One computes the solution at the current point
double val_func = 0 ;
for (int j=0 ; j<nr ; j++)
val_func += coef_sol(j+offset)*cheby(j, xi) ;
fiche << x << " " << val_func << " " << f_solution(x) << endl ;
double error = fabs(val_func-f_solution(x)) ;
if (error > error_max)
error_max = error ;
x += step ;
}
cout << "Error max : " << endl ;
cout << error_max << endl ;
return 0 ;
}
|