File: demo_tensor.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (264 lines) | stat: -rw-r--r-- 9,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 *  Simple tensor manipulations
 *
 */

/*
 *   Copyright (c) 2005 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/*
 * $Id: demo_tensor.C,v 1.6 2014/10/13 08:54:07 j_novak Exp $
 * $Log: demo_tensor.C,v $
 * Revision 1.6  2014/10/13 08:54:07  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2014/10/06 15:09:48  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.4  2006/05/30 13:22:20  j_novak
 * Back to previous versions...
 *
 * Revision 1.2  2005/11/16 17:11:59  e_gourgoulhon
 * Added fij.std_spectral_base() (although not necessary in the
 *  present case)
 * Modified some comments.
 *
 * Revision 1.1  2005/11/16 09:46:30  e_gourgoulhon
 * Added demo_tensor.C
 *
 *
 * $Header: /cvsroot/Lorene/School05/Wednesday/demo_tensor.C,v 1.6 2014/10/13 08:54:07 j_novak Exp $
 *
 */

// C headers
#include <cstdlib>
#include <cassert>
#include <cmath>

// Lorene headers
#include "headcpp.h"    // standard input/output C++ headers (iostream, fstream)
#include "metric.h"     // classes Metric, Tensor, etc...     
#include "nbr_spx.h"    // defines infinity as an ordinary number: __infinity
#include "graphique.h"  // for graphical outputs
#include "utilitaires.h"    // utilities 

using namespace Lorene ;

int main() {

    // Setup of a multi-domain grid (Lorene class Mg3d)
    // ------------------------------------------------
  
    int nz = 3 ; 	// Number of domains
    int nr = 17 ; 	// Number of collocation points in r in each domain
    int nt = 9 ; 	// Number of collocation points in theta in each domain
    int np = 8 ; 	// Number of collocation points in phi in each domain
    int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
    int symmetry_phi = NONSYM ; // no symmetry in phi
    bool compact = true ; // external domain is compactified
  
    // Multi-domain grid construction:
    
    Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
	
    cout << mgrid << endl ; 

  
    // Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
    // --------------------------------------------------------------------------

    // radial boundaries of each domain:
    double r_limits[] = {0., 1., 2., __infinity} ; 
    assert( nz == 3 ) ;  // since the above array describes only 3 domains
  
    Map_af map(mgrid, r_limits) ;   // Mapping construction
  	
    cout << map << endl ;  
    
    // Denomination of various coordinates associated with the mapping 
    // ---------------------------------------------------------------

    const Coord& r = map.r ;      
    const Coord& x = map.x ;      
    const Coord& y = map.y ;      
    
    // Some scalar field to be used as a conformal factor
    // --------------------------------------------------
    
    Scalar psi4(map) ; 
    
    psi4 = 1 + 5*x*y*exp(-r*r) ; 
    
    psi4.set_outer_boundary(nz-1, 1.) ;     // 1 at spatial infinity
                                            // (instead of NaN !)
    
    psi4.std_spectral_base() ;  // Standar polynomial bases will be used 
                                // to perform the spectral expansions

    // Graphical outputs:
    // -----------------
    
    // 1D view via PGPLOT
    des_profile(psi4, 0., 4., 1, M_PI/4, M_PI/4, "r", "\\gq\\u4") ;

    // 2D view of the slice z=0 via PGPLOT
    des_coupe_z(psi4, 0., -3., 3., -3., 3., "\\gq\\u4") ;

    // 3D view of the same slice via OpenDX
    psi4.visu_section('z', 0., -3., 3., -3., 3.) ; 
    
    cout << "Coefficients of the spectral expansion of Psi^4:" << endl ; 
    psi4.spectral_display() ; 
    
    arrete() ; // pause (waiting for return) 
    
    // Components of the flat metric in an orthonormal
    // spherical frame
    
    Sym_tensor fij(map, COV, map.get_bvect_spher()) ; 
    fij.set(1,1) = 1 ; 
    fij.set(1,2) = 0 ; 
    fij.set(1,3) = 0 ; 
    fij.set(2,2) = 1 ; 
    fij.set(2,3) = 0 ; 
    fij.set(3,3) = 1 ; 

    fij.std_spectral_base() ;  // Standar polynomial bases will be used 
                                // to perform the spectral expansions

     
    // Components of the physical metric in an orthonormal
    // spherical frame

    Sym_tensor gij = psi4 * fij ; 

    // Construction of the metric from the covariant components:     
    
    Metric gam(gij) ; 
    
    // Construction of a Vector : V^i = (Psi^4)^{;i}
    
    Vector vv = psi4.derive_con(gam) ;  // this is spherical components
                                        // (same triad as gam)

    vv.dec_dzpuis(2) ; // the dzpuis flag (power of r in the CED)
                       // is set to 0 (= 2 - 2) 
        
    // Cartesian components of the vector :
    Vector vv_cart = vv ; 
    vv_cart.change_triad( map.get_bvect_cart() ) ; 
    
    // Plot of the vector field :
    
    des_coupe_vect_z(vv_cart, 0., -4., 1., -2., 2., -2., 2., "Vector V") ;

    // A symmetric tensor of valence 2 : the Ricci tensor associated
    // with the metric gam :
    
    Sym_tensor tens1 = gam.ricci() ; 

    const Sym_tensor& tens2 = gam.ricci() ; // same as before except that 
                                            // no memory is allocated for a
                                            //    new tensor: tens2 is merely 
                                            //    a non-modifiable reference to
                                            //    the Ricci tensor of gam
                                            
    // Plot of tens1
    
    des_meridian(tens1, 0., 4., "Ricci (x r\\u3\\d in last domain)", 10) ; 

    // Another valence 2 tensor : the covariant derivative of V with respect to 
    //       the metric gam :
    
    Tensor tens3 = vv.derive_cov(gam) ; 
    
    const Tensor& tens4 = vv.derive_cov(gam) ; 
    
    // the reference tens4 is preferable over the new object tens3 if you do
    // not intend to modify tens4 or vv, because it does not perform any
    // memory allocation for a tensor. 

    // Raising an index with the metric gam :
    
    Tensor tens5 = tens3.up(1, gam) ; // 1 = second index 
                                      // (index j in the covariant derivative 
                                      //   V^i_{;j})
                  
    Tensor diff1 = tens5 - vv.derive_con(gam) ; // this should be zero

    // Check:
    cout << "Maximum value of diff1 in each domain : " << endl ; 
    Tbl tdiff1 =  max(diff1) ;  
      
    // Another valence 2 tensor : Lie_V R_{ij}
    
    Sym_tensor tens6 = tens1.derive_lie(vv) ; 
    
    // Contracting two tensors :
    
    Tensor tens7 = contract(tens1, 1, tens5, 0) ; // contracting the last index
                                                  // of tens1 with the first one 
                                                  // of tens5
    
    // self contraction of a tensor :
    
    Scalar scal1 = contract(tens3, 0, 1) ; // 0 = first index, 1 = second index
    
    // Each of these fields should be zero:
    
    Scalar diff2 = scal1 - vv.divergence(gam) ;   // divergence
    
    Scalar diff3 = scal1 - tens3.trace() ;        // trace                                      

    // Check : 
    cout << "Maximum value of diff2 in each domain : " 
        << max(abs(diff2)) << endl ;  
    
    cout << "Maximum value of diff3 in each domain : " 
        << max(abs(diff3)) << endl ;  
        
    arrete() ; 
    
    // Tensorial product : 
    
    Tensor_sym tens8 = tens1 * tens3 ;  // tens1 = R_{ij}
                                        // tens3 = V^k_{;l}
                                        // tens8 = (T8)_{ij}^k_l = R_ij V^k_{;l}
    
    cout << "Valence of tens8 : " << tens8.get_valence() << endl ; 
    
    arrete() ; 
    
    cout << "Spectral coefficients of the component (2,3,1,1) of tens8 : "
         << endl ; 
         
    tens8(2,3,1,1).spectral_display() ; 
    
    ////////////////////////////////////////////////////////////////////////
    //                                                                    //
    // To see more functions, please have a look to Lorene documentation  // 
    // at http://www.lorene.obspm.fr/Refguide/                            //
    //                                                                    //
    ////////////////////////////////////////////////////////////////////////
                                               
    return EXIT_SUCCESS ; 

}