1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Simple tensor manipulations
*
*/
/*
* Copyright (c) 2005 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* $Id: demo_tensor.C,v 1.6 2014/10/13 08:54:07 j_novak Exp $
* $Log: demo_tensor.C,v $
* Revision 1.6 2014/10/13 08:54:07 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2014/10/06 15:09:48 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.4 2006/05/30 13:22:20 j_novak
* Back to previous versions...
*
* Revision 1.2 2005/11/16 17:11:59 e_gourgoulhon
* Added fij.std_spectral_base() (although not necessary in the
* present case)
* Modified some comments.
*
* Revision 1.1 2005/11/16 09:46:30 e_gourgoulhon
* Added demo_tensor.C
*
*
* $Header: /cvsroot/Lorene/School05/Wednesday/demo_tensor.C,v 1.6 2014/10/13 08:54:07 j_novak Exp $
*
*/
// C headers
#include <cstdlib>
#include <cassert>
#include <cmath>
// Lorene headers
#include "headcpp.h" // standard input/output C++ headers (iostream, fstream)
#include "metric.h" // classes Metric, Tensor, etc...
#include "nbr_spx.h" // defines infinity as an ordinary number: __infinity
#include "graphique.h" // for graphical outputs
#include "utilitaires.h" // utilities
using namespace Lorene ;
int main() {
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 3 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 9 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified
// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
// --------------------------------------------------------------------------
// radial boundaries of each domain:
double r_limits[] = {0., 1., 2., __infinity} ;
assert( nz == 3 ) ; // since the above array describes only 3 domains
Map_af map(mgrid, r_limits) ; // Mapping construction
cout << map << endl ;
// Denomination of various coordinates associated with the mapping
// ---------------------------------------------------------------
const Coord& r = map.r ;
const Coord& x = map.x ;
const Coord& y = map.y ;
// Some scalar field to be used as a conformal factor
// --------------------------------------------------
Scalar psi4(map) ;
psi4 = 1 + 5*x*y*exp(-r*r) ;
psi4.set_outer_boundary(nz-1, 1.) ; // 1 at spatial infinity
// (instead of NaN !)
psi4.std_spectral_base() ; // Standar polynomial bases will be used
// to perform the spectral expansions
// Graphical outputs:
// -----------------
// 1D view via PGPLOT
des_profile(psi4, 0., 4., 1, M_PI/4, M_PI/4, "r", "\\gq\\u4") ;
// 2D view of the slice z=0 via PGPLOT
des_coupe_z(psi4, 0., -3., 3., -3., 3., "\\gq\\u4") ;
// 3D view of the same slice via OpenDX
psi4.visu_section('z', 0., -3., 3., -3., 3.) ;
cout << "Coefficients of the spectral expansion of Psi^4:" << endl ;
psi4.spectral_display() ;
arrete() ; // pause (waiting for return)
// Components of the flat metric in an orthonormal
// spherical frame
Sym_tensor fij(map, COV, map.get_bvect_spher()) ;
fij.set(1,1) = 1 ;
fij.set(1,2) = 0 ;
fij.set(1,3) = 0 ;
fij.set(2,2) = 1 ;
fij.set(2,3) = 0 ;
fij.set(3,3) = 1 ;
fij.std_spectral_base() ; // Standar polynomial bases will be used
// to perform the spectral expansions
// Components of the physical metric in an orthonormal
// spherical frame
Sym_tensor gij = psi4 * fij ;
// Construction of the metric from the covariant components:
Metric gam(gij) ;
// Construction of a Vector : V^i = (Psi^4)^{;i}
Vector vv = psi4.derive_con(gam) ; // this is spherical components
// (same triad as gam)
vv.dec_dzpuis(2) ; // the dzpuis flag (power of r in the CED)
// is set to 0 (= 2 - 2)
// Cartesian components of the vector :
Vector vv_cart = vv ;
vv_cart.change_triad( map.get_bvect_cart() ) ;
// Plot of the vector field :
des_coupe_vect_z(vv_cart, 0., -4., 1., -2., 2., -2., 2., "Vector V") ;
// A symmetric tensor of valence 2 : the Ricci tensor associated
// with the metric gam :
Sym_tensor tens1 = gam.ricci() ;
const Sym_tensor& tens2 = gam.ricci() ; // same as before except that
// no memory is allocated for a
// new tensor: tens2 is merely
// a non-modifiable reference to
// the Ricci tensor of gam
// Plot of tens1
des_meridian(tens1, 0., 4., "Ricci (x r\\u3\\d in last domain)", 10) ;
// Another valence 2 tensor : the covariant derivative of V with respect to
// the metric gam :
Tensor tens3 = vv.derive_cov(gam) ;
const Tensor& tens4 = vv.derive_cov(gam) ;
// the reference tens4 is preferable over the new object tens3 if you do
// not intend to modify tens4 or vv, because it does not perform any
// memory allocation for a tensor.
// Raising an index with the metric gam :
Tensor tens5 = tens3.up(1, gam) ; // 1 = second index
// (index j in the covariant derivative
// V^i_{;j})
Tensor diff1 = tens5 - vv.derive_con(gam) ; // this should be zero
// Check:
cout << "Maximum value of diff1 in each domain : " << endl ;
Tbl tdiff1 = max(diff1) ;
// Another valence 2 tensor : Lie_V R_{ij}
Sym_tensor tens6 = tens1.derive_lie(vv) ;
// Contracting two tensors :
Tensor tens7 = contract(tens1, 1, tens5, 0) ; // contracting the last index
// of tens1 with the first one
// of tens5
// self contraction of a tensor :
Scalar scal1 = contract(tens3, 0, 1) ; // 0 = first index, 1 = second index
// Each of these fields should be zero:
Scalar diff2 = scal1 - vv.divergence(gam) ; // divergence
Scalar diff3 = scal1 - tens3.trace() ; // trace
// Check :
cout << "Maximum value of diff2 in each domain : "
<< max(abs(diff2)) << endl ;
cout << "Maximum value of diff3 in each domain : "
<< max(abs(diff3)) << endl ;
arrete() ;
// Tensorial product :
Tensor_sym tens8 = tens1 * tens3 ; // tens1 = R_{ij}
// tens3 = V^k_{;l}
// tens8 = (T8)_{ij}^k_l = R_ij V^k_{;l}
cout << "Valence of tens8 : " << tens8.get_valence() << endl ;
arrete() ;
cout << "Spectral coefficients of the component (2,3,1,1) of tens8 : "
<< endl ;
tens8(2,3,1,1).spectral_display() ;
////////////////////////////////////////////////////////////////////////
// //
// To see more functions, please have a look to Lorene documentation //
// at http://www.lorene.obspm.fr/Refguide/ //
// //
////////////////////////////////////////////////////////////////////////
return EXIT_SUCCESS ;
}
|