1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/*
* Copyright (c) 2000-2001 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char bhole_with_ns_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bhole/bhole_with_ns.C,v 1.12 2014/10/13 08:52:40 j_novak Exp $" ;
/*
* $Id: bhole_with_ns.C,v 1.12 2014/10/13 08:52:40 j_novak Exp $
* $Log: bhole_with_ns.C,v $
* Revision 1.12 2014/10/13 08:52:40 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.11 2014/10/06 15:12:58 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.10 2007/04/24 20:14:04 f_limousin
* Implementation of Dirichlet and Neumann BC for the lapse
*
* Revision 1.9 2007/02/03 07:46:30 p_grandclement
* Addition of term kss for psi BC
*
* Revision 1.8 2006/04/27 09:12:31 p_grandclement
* First try at irrotational black holes
*
* Revision 1.7 2006/04/25 07:21:57 p_grandclement
* Various changes for the NS_BH project
*
* Revision 1.6 2005/08/29 15:10:13 p_grandclement
* Addition of things needed :
* 1) For BBH with different masses
* 2) Provisory files for the mixted binaries (Bh and NS) : THIS IS NOT
* WORKING YET !!!
*
* Revision 1.5 2004/03/25 10:28:57 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.4 2003/11/25 07:11:09 k_taniguchi
* Change some arguments from the class Etolie_bin to Et_bin_nsbh.
*
* Revision 1.3 2003/11/13 13:43:53 p_grandclement
* Addition of things needed for Bhole::update_metric (const Etoile_bin&, double, double)
*
* Revision 1.2 2003/10/24 13:05:49 p_grandclement
* correction of the equations for Bin_ns_bh...
*
* Revision 1.1 2003/02/13 16:40:25 p_grandclement
* Addition of various things for the Bin_ns_bh project, non of them being
* completely tested
*
*
*
* $Header: /cvsroot/Lorene/C++/Source/Bhole/bhole_with_ns.C,v 1.12 2014/10/13 08:52:40 j_novak Exp $
*
*/
//standard
#include <cstdlib>
#include <cmath>
// Lorene
#include "tenseur.h"
#include "bhole.h"
#include "proto.h"
#include "utilitaires.h"
#include "et_bin_nsbh.h"
#include "graphique.h"
#include "scalar.h"
//Resolution pour le lapse pour 1 seul trou
namespace Lorene {
void Bhole::solve_lapse_with_ns (double relax, int bound_nn, double lim_nn) {
assert ((relax>0) && (relax<=1)) ;
cout << "Resolution LAPSE" << endl ;
// Pour la relaxation ...
Cmp lapse_old (n_auto()) ;
Tenseur auxi (flat_scalar_prod(tkij_tot, tkij_auto)) ;
Tenseur kk (mp) ;
kk = 0 ;
Tenseur work(mp) ;
work.set_etat_qcq() ;
for (int i=0 ; i<3 ; i++) {
work.set() = auxi(i, i) ;
kk = kk + work ;
}
// La source
Cmp psiq (pow(psi_tot(), 4.)) ;
psiq.std_base_scal() ;
Cmp source
(-2*flat_scalar_prod(psi_auto.gradient(), grad_n_tot)()/psi_tot()
+psiq*n_tot()*kk()) ;
source.std_base_scal() ;
Cmp soluce(n_auto()) ;
if (bound_nn == 0){
// Dirichlet
Valeur limite (mp.get_mg()->get_angu()) ;
limite = -0.5 + lim_nn ;
int np = mp.get_mg()->get_np(1) ;
int nt = mp.get_mg()->get_nt(1) ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++)
limite.set(0,k,j,0) -= n_comp() (1, k, j, 0) ;
limite.std_base_scal() ;
soluce = source.poisson_dirichlet(limite, 0) ;
}
else {
assert(bound_nn == 1);
// Neumann
Valeur limite (mp.get_mg()->get_angu()) ;
limite.annule_hard() ;
int np = mp.get_mg()->get_np(1) ;
int nt = mp.get_mg()->get_nt(1) ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++)
limite.set(0,k,j,0) -= n_tot()(1, k, j, 0)/psi_tot()(1,k,j,0)*
psi_tot().dsdr()(1,k,j,0) ;
limite.std_base_scal() ;
soluce = source.poisson_neumann(limite, 0) ;
}
soluce = soluce + 0.5 ;
n_auto.set() = relax*soluce + (1-relax)*lapse_old ;
n_auto.set().raccord(3) ;
}
// Resolution sur Psi :
void Bhole::solve_psi_with_ns (double relax) {
assert ((relax>0) && (relax<=1)) ;
cout << "Resolution PSI" << endl ;
Cmp psi_old (psi_auto()) ;
Tenseur auxi (flat_scalar_prod(tkij_auto, tkij_tot)) ;
Tenseur kk (mp) ;
kk = 0 ;
Tenseur work(mp) ;
work.set_etat_qcq() ;
for (int i=0 ; i<3 ; i++) {
work.set() = auxi(i, i) ;
kk = kk + work ;
}
Cmp psic (pow(psi_tot(), 5.)) ;
psic.std_base_scal() ;
// La source :
Cmp source (-psic*kk()/8.) ;
source.std_base_scal() ;
// Condition limite :
Valeur limite (mp.get_mg()->get_angu()) ;
limite = 1 ;
int np = mp.get_mg()->get_np(1) ;
int nt = mp.get_mg()->get_nt(1) ;
double* vec_s = new double[3] ;
Mtbl tet_mtbl (mp.get_mg()) ;
tet_mtbl = mp.tet ;
Mtbl phi_mtbl (mp.get_mg()) ;
phi_mtbl = mp.phi ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++) {
double tet = tet_mtbl(1,k,j,0) ;
double phi = phi_mtbl(1,k,j,0) ;
vec_s[0] = cos(phi)*sin(tet) ;
vec_s[1] = sin(phi)*sin(tet) ;
vec_s[2] = cos(tet) ;
double part_ss = 0 ;
if (tkij_tot.get_etat()==ETATQCQ)
for (int m=0 ; m<3 ; m++)
for (int n=0 ; n<3 ; n++)
part_ss += vec_s[m]*vec_s[n]*tkij_tot(m,n)(1,k,j,0) ;
part_ss *= pow(psi_tot()(1,k,j,0),3.)/4. ;
limite.set(0, k, j, 0) = -0.5/rayon*psi_tot()(1, k, j, 0) -
psi_comp().dsdr()(1, k, j, 0) - part_ss ;
}
limite.std_base_scal() ;
Cmp soluce (source.poisson_neumann(limite, 0)) ;
soluce = soluce + 1./2. ;
psi_auto.set() = relax*soluce + (1-relax)*psi_old ;
psi_auto.set().raccord(3) ;
}
// Le shift. Processus iteratif pour cause de CL.
void Bhole::solve_shift_with_ns (const Et_bin_nsbh& ns,
double precision, double relax,
int bound_nn, double lim_nn) {
assert (precision > 0) ;
assert ((relax>0) && (relax<=1)) ;
cout << "resolution SHIFT" << endl ;
Tenseur shift_old (shift_auto) ;
Tenseur source (-6*flat_scalar_prod(taij_tot, psi_auto.gradient())/psi_tot
+ 2*flat_scalar_prod(tkij_tot, n_auto.gradient())) ;
source.set_std_base() ;
// On verifie si les 3 composantes ne sont pas nulles :
if (source.get_etat() == ETATQCQ) {
int indic = 0 ;
for (int i=0 ; i<3 ; i++)
if (source(i).get_etat() == ETATQCQ)
indic = 1 ;
if (indic ==0)
for (int i=0 ; i<3 ; i++)
source.set_etat_zero() ;
}
// On filtre les hautes frequences pour raison de stabilite :
if (source.get_etat() == ETATQCQ)
for (int i=0 ; i<3 ; i++)
source.set(i).filtre(4) ;
// On determine les conditions limites en fonction de omega et de NS :
int np = mp.get_mg()->get_np(1) ;
int nt = mp.get_mg()->get_nt(1) ;
Mtbl x_mtbl (mp.get_mg()) ;
x_mtbl.set_etat_qcq() ;
Mtbl y_mtbl (mp.get_mg()) ;
y_mtbl.set_etat_qcq() ;
x_mtbl = mp.x ;
y_mtbl = mp.y ;
double air, theta, phi, xabs, yabs, zabs ;
Mtbl Xabs (mp.get_mg()) ;
Xabs = mp.xa ;
Mtbl Yabs (mp.get_mg()) ;
Yabs = mp.ya ;
Mtbl Zabs (mp.get_mg()) ;
Zabs = mp.za ;
Mtbl tet_mtbl (mp.get_mg()) ;
tet_mtbl = mp.tet ;
Mtbl phi_mtbl (mp.get_mg()) ;
phi_mtbl = mp.phi ;
// Les bases pour les conditions limites :
Base_val** bases = mp.get_mg()->std_base_vect_cart() ;
Valeur lim_x (mp.get_mg()->get_angu()) ;
lim_x = 1 ;
Valeur lim_y (mp.get_mg()->get_angu()) ;
lim_y = 1 ;
Valeur lim_z (mp.get_mg()->get_angu()) ;
lim_z = 1 ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++) {
double tet = tet_mtbl(1,k,j,0) ;
double phy = phi_mtbl(1,k,j,0) ;
xabs = Xabs (1, k, j, 0) ;
yabs = Yabs (1, k, j, 0) ;
zabs = Zabs (1, k, j, 0) ;
ns.get_mp().convert_absolute (xabs, yabs, zabs, air, theta, phi) ;
lim_x.set(0, k, j, 0) = omega*Yabs(0, 0, 0, 0) +
omega_local*y_mtbl(1,k,j,0) -
ns.get_shift_auto()(0).val_point(air, theta, phi) +
n_tot()(1,k,j,0)/psi_tot()(1,k,j,0)/psi_tot()(1,k,j,0)*
cos(phy)*sin(tet) ;
lim_x.base = *bases[0] ;
lim_y.set(0, k, j, 0) = -omega*Xabs(0, 0, 0, 0) -
omega_local*x_mtbl(1,k,j,0) -
ns.get_shift_auto()(1).val_point(air, theta, phi) +
n_tot()(1,k,j,0)/psi_tot()(1,k,j,0)/psi_tot()(1,k,j,0)*
sin(phy)*sin(tet) ;
lim_z.set(0, k, j, 0) = -
ns.get_shift_auto()(2).val_point(air, theta, phi) +
n_tot()(1,k,j,0)/psi_tot()(1,k,j,0)/psi_tot()(1,k,j,0)*cos(tet) ;
}
lim_x.base = *bases[0] ;
lim_y.base = *bases[1] ;
lim_z.base = *bases[2] ;
// On n'en a plus besoin
for (int i=0 ; i<3 ; i++)
delete bases[i] ;
delete [] bases ;
// On resout :
poisson_vect_frontiere(1./3., source, shift_auto, lim_x, lim_y,
lim_z, 0, precision, 20) ;
shift_auto = relax*shift_auto + (1-relax)*shift_old ;
for (int i=0; i<3; i++)
shift_auto.set(i).raccord(3) ;
// Regularisation of the shift if necessary
// -----------------------------------------
if (bound_nn == 0 && lim_nn == 0)
regul = regle (shift_auto, ns.get_shift_auto(), omega, omega_local) ;
else
regul = 0. ;
}
void Bhole::equilibrium (const Et_bin_nsbh& comp,
double precision, double relax,
int bound_nn, double lim_nn) {
// Solve for the lapse :
solve_lapse_with_ns (relax, bound_nn, lim_nn) ;
// Solve for the conformal factor :
solve_psi_with_ns (relax) ;
if (omega != 0)
// Solve for the shift vector :
solve_shift_with_ns (comp, precision, relax, bound_nn, lim_nn) ;
}
void Bhole::update_metric (const Et_bin_nsbh& comp) {
fait_n_comp(comp) ;
fait_psi_comp(comp) ;
/*
Scalar lapse_auto (n_auto()) ;
Scalar lapse_tot (n_tot()) ;
Scalar lapse_comp (n_comp()) ;
des_meridian(lapse_auto, 0, 7, "n_auto", 0) ;
des_meridian(lapse_comp, 0, 7, "n_comp", 11) ;
des_meridian(lapse_tot, 0, 7, "n_tot", 1) ;
Scalar psiauto (psi_auto()) ;
Scalar psitot (psi_tot()) ;
des_meridian(psiauto, 0, 7, "psi_auto", 2) ;
des_meridian(psitot, 0, 7, "psi_tot", 3) ;
*/
}
}
|