1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/*
* Methods of Bin_star::dirac_gauge
*
* (see file star.h for documentation)
*
*/
/*
* Copyright (c) 2005 Francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char binary_dirac_C[] = "$Header: /cvsroot/Lorene/C++/Source/Binary/binary_dirac.C,v 1.3 2014/10/13 08:52:44 j_novak Exp $" ;
/*
* $Id: binary_dirac.C,v 1.3 2014/10/13 08:52:44 j_novak Exp $
* $Log: binary_dirac.C,v $
* Revision 1.3 2014/10/13 08:52:44 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.2 2006/04/11 14:25:15 f_limousin
* New version of the code : improvement of the computation of some
* critical sources, estimation of the dirac gauge, helical symmetry...
*
* Revision 1.1 2005/11/08 20:17:01 f_limousin
* Function used to impose Dirac gauge during an iteration.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Binary/binary_dirac.C,v 1.3 2014/10/13 08:52:44 j_novak Exp $ *
*/
// Headers Lorene
#include "tenseur.h"
#include "binary.h"
#include "star.h"
#include "graphique.h"
#include "utilitaires.h"
#include "param.h"
namespace Lorene {
void Binary::dirac_gauge() {
int nz = star1.mp.get_mg()->get_nzone() ;
int nr = star1.mp.get_mg()->get_nr(0);
int nt = star1.mp.get_mg()->get_nt(0);
int np = star1.mp.get_mg()->get_np(0);
// Importations
// ------------
// Star 1
star1.hij_comp.set_triad(star1.mp.get_bvect_cart()) ;
Sym_tensor comp_hij1(star2.hij_auto) ;
comp_hij1.change_triad(star2.mp.get_bvect_cart()) ;
comp_hij1.change_triad(star1.mp.get_bvect_cart()) ;
assert ( *(star1.hij_comp.get_triad()) == *(comp_hij1.get_triad())) ;
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++) {
star1.hij_comp.set(i,j).set_etat_qcq() ;
star1.hij_comp.set(i,j).import( (comp_hij1)(i,j) ) ;
}
star1.hij_comp.std_spectral_base() ;//set the bases for spectral expansions
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
star1.hij.set(i,j) = star1.hij_auto(i,j) + star1.hij_comp(i,j) ;
// Star 2
star2.hij_comp.set_triad(star2.mp.get_bvect_cart()) ;
Sym_tensor comp_hij2(star1.hij_auto) ;
comp_hij2.change_triad(star1.mp.get_bvect_cart()) ;
comp_hij2.change_triad(star2.mp.get_bvect_cart()) ;
assert ( *(star2.hij_comp.get_triad()) == *(comp_hij2.get_triad())) ;
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++) {
star2.hij_comp.set(i,j).set_etat_qcq() ;
star2.hij_comp.set(i,j).import( (comp_hij2)(i,j) ) ;
}
star2.hij_comp.std_spectral_base() ;//set the bases for spectral expansions
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
star2.hij.set(i,j) = star2.hij_auto(i,j) + star2.hij_comp(i,j) ;
// -----------------------------------------
// Resolution of the Poisson equation for xi
// -----------------------------------------
cout << "Function Binary::dirac_gauge()" << endl ;
// Star 1
// ----------
int mermax = 50 ;
double precis = 1e-5 ;
double precis_poisson = 1e-14 ;
double relax_poisson = 1.5 ;
int mer_poisson = 4 ;
Scalar rr1 (star1.mp) ;
rr1 = star1.mp.r ;
Scalar rr2 (star2.mp) ;
rr2 = star2.mp.r ;
Vector xi1(star1.mp, CON, star1.mp.get_bvect_cart()) ;
xi1.set(1) = 0. ;
xi1.set(2) = 0. ;
xi1.set(3) = 0. ;
xi1.std_spectral_base() ;
Vector xi1_old(xi1) ;
Scalar ssjm1_xi11 (xi1(1)) ;
Scalar ssjm1_xi12 (xi1(2)) ;
Scalar ssjm1_xi13 (xi1(3)) ;
for(int mer=0; mer<mermax; mer++){
xi1_old = xi1 ;
// Function exp(-(r-r_0)^2/sigma^2)
// --------------------------------
double r0_1 = star1.mp.val_r(nz-2, 1, 0, 0) ;
double sigma = 3.*r0_1 ;
Scalar ff1 (star1.mp) ;
ff1 = exp( -(rr1 - r0_1)*(rr1 - r0_1)/sigma/sigma ) ;
for (int ii=0; ii<nz-1; ii++)
ff1.set_domain(ii) = 1. ;
ff1.set_outer_boundary(nz-1, 0) ;
ff1.std_spectral_base() ;
// Source
Vector source_xi1 (star1.hij.divergence(star1.flat)) ;
source_xi1.inc_dzpuis() ; // dzpuis = 3
double lambda = 0. ;
Vector source_reg1 = - (1./3. - lambda) * xi1.divergence(star1.flat)
.derive_con(star1.flat) ;
source_xi1 += source_reg1 ;
// Resolution of the Poisson equations
Cmp ssjm1xi11 (ssjm1_xi11) ;
Cmp ssjm1xi12 (ssjm1_xi12) ;
Cmp ssjm1xi13 (ssjm1_xi13) ;
ssjm1xi11.set_etat_qcq() ;
ssjm1xi12.set_etat_qcq() ;
ssjm1xi13.set_etat_qcq() ;
Param par_xi11 ;
int niter ;
par_xi11.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi11.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi11.add_double(precis_poisson, 1) ; // required precision
par_xi11.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi11.add_cmp_mod(ssjm1xi11) ;
Param par_xi12 ;
par_xi12.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi12.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi12.add_double(precis_poisson, 1) ; // required precision
par_xi12.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi12.add_cmp_mod(ssjm1xi12) ;
Param par_xi13 ;
par_xi13.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi13.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi13.add_double(precis_poisson, 1) ; // required precision
par_xi13.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi13.add_cmp_mod(ssjm1xi13) ;
source_xi1(1).poisson(par_xi11, xi1.set(1)) ;
source_xi1(2).poisson(par_xi12, xi1.set(2)) ;
source_xi1(3).poisson(par_xi13, xi1.set(3)) ;
ssjm1_xi11 = ssjm1xi11 ;
ssjm1_xi12 = ssjm1xi12 ;
ssjm1_xi13 = ssjm1xi13 ;
// Check: has the equation for xi been correctly solved ?
// --------------------------------------------------------------
Vector lap_xi1 = (xi1.derive_con(star1.flat)).divergence(star1.flat)
+ lambda* xi1.divergence(star1.flat).derive_con(star1.flat) ;
Tbl tdiff_xi1_x = diffrel(lap_xi1(1), source_xi1(1)) ;
Tbl tdiff_xi1_y = diffrel(lap_xi1(2), source_xi1(2)) ;
Tbl tdiff_xi1_z = diffrel(lap_xi1(3), source_xi1(3)) ;
cout <<
"Relative error in the resolution of the equation for xi1 : "
<< endl ;
cout << "x component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi1_x(l) << " " ;
}
cout << endl ;
cout << "y component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi1_y(l) << " " ;
}
cout << endl ;
cout << "z component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi1_z(l) << " " ;
}
cout << endl ;
double erreur = 0 ;
Tbl diff (diffrelmax (xi1_old(1), xi1(1))) ;
for (int i=1 ; i<nz ; i++)
if (diff(i) > erreur)
erreur = diff(i) ;
cout << "Step : " << mer << " Difference : " << erreur << endl ;
cout << "-------------------------------------" << endl ;
if (erreur < precis)
mer = mermax ;
}
// Star 2
// ----------
Vector xi2(star2.mp, CON, star2.mp.get_bvect_cart()) ;
xi2.set(1) = 0. ;
xi2.set(2) = 0. ;
xi2.set(3) = 0. ;
xi2.std_spectral_base() ;
Vector xi2_old(xi2) ;
Scalar ssjm1_xi21 (xi2(1)) ;
Scalar ssjm1_xi22 (xi2(2)) ;
Scalar ssjm1_xi23 (xi2(3)) ;
for(int mer=0; mer<mermax; mer++){
xi2_old = xi2 ;
// Function exp(-(r-r_0)^2/sigma^2)
// --------------------------------
double r0_2 = star2.mp.val_r(nz-2, 1, 0, 0) ;
double sigma = 3.*r0_2 ;
Scalar ff2 (star2.mp) ;
ff2 = exp( -(rr2 - r0_2)*(rr2 - r0_2)/sigma/sigma ) ;
for (int ii=0; ii<nz-1; ii++)
ff2.set_domain(ii) = 1. ;
ff2.set_outer_boundary(nz-1, 0) ;
ff2.std_spectral_base() ;
// Source
Vector source_xi2 (star2.hij.divergence(star2.flat)) ;
source_xi2.inc_dzpuis() ; // dzpuis = 3
double lambda = 0. ;
Vector source_reg2 = - (1./3. - lambda) * xi2.divergence(star2.flat)
.derive_con(star2.flat) ;
source_xi2 += source_reg2 ;
// Resolution of the Poisson equations
Cmp ssjm1xi21 (ssjm1_xi21) ;
Cmp ssjm1xi22 (ssjm1_xi22) ;
Cmp ssjm1xi23 (ssjm1_xi23) ;
ssjm1xi21.set_etat_qcq() ;
ssjm1xi22.set_etat_qcq() ;
ssjm1xi23.set_etat_qcq() ;
Param par_xi21 ;
int niter ;
par_xi21.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi21.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi21.add_double(precis_poisson, 1) ; // required precision
par_xi21.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi21.add_cmp_mod(ssjm1xi21) ;
Param par_xi22 ;
par_xi22.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi22.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi22.add_double(precis_poisson, 1) ; // required precision
par_xi22.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi22.add_cmp_mod(ssjm1xi22) ;
Param par_xi23 ;
par_xi23.add_int(mer_poisson, 0) ; // maximum number of iterations
par_xi23.add_double(relax_poisson, 0) ; // relaxation parameter
par_xi23.add_double(precis_poisson, 1) ; // required precision
par_xi23.add_int_mod(niter, 0) ; // number of iterations actually used
par_xi23.add_cmp_mod(ssjm1xi23) ;
source_xi2(1).poisson(par_xi21, xi2.set(1)) ;
source_xi2(2).poisson(par_xi22, xi2.set(2)) ;
source_xi2(3).poisson(par_xi23, xi2.set(3)) ;
ssjm1_xi21 = ssjm1xi21 ;
ssjm1_xi22 = ssjm1xi22 ;
ssjm1_xi23 = ssjm1xi23 ;
// Check: has the equation for xi been correctly solved ?
// --------------------------------------------------------------
Vector lap_xi2 = (xi2.derive_con(star2.flat)).divergence(star2.flat)
+ lambda* xi2.divergence(star2.flat).derive_con(star2.flat) ;
Tbl tdiff_xi2_x = diffrel(lap_xi2(1), source_xi2(1)) ;
Tbl tdiff_xi2_y = diffrel(lap_xi2(2), source_xi2(2)) ;
Tbl tdiff_xi2_z = diffrel(lap_xi2(3), source_xi2(3)) ;
cout <<
"Relative error in the resolution of the equation for xi2 : "
<< endl ;
cout << "x component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi2_x(l) << " " ;
}
cout << endl ;
cout << "y component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi2_y(l) << " " ;
}
cout << endl ;
cout << "z component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_xi2_z(l) << " " ;
}
cout << endl ;
double erreur = 0 ;
Tbl diff (diffrelmax (xi2_old(1), xi2(1))) ;
for (int i=1 ; i<nz ; i++)
if (diff(i) > erreur)
erreur = diff(i) ;
cout << "Step : " << mer << " Difference : " << erreur << endl ;
cout << "-------------------------------------" << endl ;
if (erreur < precis)
mer = mermax ;
}
// -----------------------------
// Computation of the new metric
// -----------------------------
// Star 1
// -------
Sym_tensor guu_dirac1 (star1.mp, CON, star1.mp.get_bvect_cart()) ;
guu_dirac1 = star1.gamma.con().derive_lie(xi1) ;
guu_dirac1.dec_dzpuis(2) ;
guu_dirac1 = guu_dirac1 + star1.gamma.con() ;
star1.gamma = guu_dirac1 ;
Sym_tensor gtilde_con1(star1.mp, CON, star1.mp.get_bvect_cart()) ;
Sym_tensor hij_dirac1(star1.mp, CON, star1.mp.get_bvect_cart()) ;
gtilde_con1 = pow(star1.gamma.determinant(), 1./3.) * guu_dirac1 ;
gtilde_con1.std_spectral_base() ;
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
hij_dirac1.set(i,j) = gtilde_con1(i,j) - star1.flat.con()(i,j) ;
star1.gtilde = gtilde_con1 ;
star1.psi4 = pow(star1.gamma.determinant(), 1./3.) ;
star1.psi4.std_spectral_base() ;
cout << "norme de h_uu avant :" << endl ;
for (int i=1; i<=3; i++)
for (int j=1; j<=i; j++) {
cout << " Comp. " << i << " " << j << " : " ;
for (int l=0; l<nz; l++){
cout << norme(star1.hij(i,j)/(nr*nt*np))(l) << " " ;
}
cout << endl ;
}
cout << endl ;
cout << "norme de h_uu en jauge de dirac :" << endl ;
for (int i=1; i<=3; i++)
for (int j=1; j<=i; j++) {
cout << " Comp. " << i << " " << j << " : " ;
for (int l=0; l<nz; l++){
cout << norme(hij_dirac1(i,j)/(nr*nt*np))(l) << " " ;
}
cout << endl ;
}
cout << endl ;
// Check of the Dirac gauge
// ------------------------
Vector hh_dirac (star1.hij.divergence(star1.flat)) ;
cout << "For comparaison H^i before computation = " << endl
<< norme(hh_dirac(1))/(nr*nt*np)
<< endl
<< norme(hh_dirac(2))/(nr*nt*np)
<< endl
<< norme(hh_dirac(3))/(nr*nt*np)
<< endl ;
Vector hh_dirac_new (hij_dirac1.divergence(star1.flat)) ;
cout << "Vector H^i after the computation" << endl ;
for (int i=1; i<=3; i++){
cout << " Comp. " << i << " : " << norme(hh_dirac_new(i)
/(nr*nt*np)) << endl ;
}
star1.hij_auto = star1.hij_auto + (hij_dirac1 - star1.hij) *
star1.decouple ;
star1.hij_comp = star1.hij_comp + (hij_dirac1 - star1.hij) *
(1 - star1.decouple) ;
star1.hij = hij_dirac1 ;
// Star 2
// -------
Sym_tensor guu_dirac2 (star2.mp, CON, star2.mp.get_bvect_cart()) ;
guu_dirac2 = star2.gamma.con().derive_lie(xi2) ;
guu_dirac2.dec_dzpuis(2) ;
guu_dirac2 = guu_dirac2 + star2.gamma.con() ;
star2.gamma = guu_dirac2 ;
Sym_tensor gtilde_con2(star2.mp, CON, star2.mp.get_bvect_cart()) ;
Sym_tensor hij_dirac2(star2.mp, CON, star2.mp.get_bvect_cart()) ;
gtilde_con2 = pow(star2.gamma.determinant(), 1./3.) * guu_dirac2 ;
gtilde_con2.std_spectral_base() ;
for(int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
hij_dirac2.set(i,j) = gtilde_con2(i,j) - star2.flat.con()(i,j) ;
star2.gtilde = gtilde_con2 ;
star2.psi4 = pow(star2.gamma.determinant(), 1./3.) ;
star2.psi4.std_spectral_base() ;
star2.hij_auto = star2.hij_auto + (hij_dirac2 - star2.hij) *
star2.decouple ;
star2.hij_comp = star2.hij_comp + (hij_dirac2 - star2.hij) *
(1 - star2.decouple) ;
star2.hij = hij_dirac2 ;
//arrete() ;
}
}
|