1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
/*
* Methods of class Binary to compute global quantities
*
* (see file binary.h for documentation)
*/
/*
* Copyright (c) 2004 Francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char binary_global_C[] = "$Header: /cvsroot/Lorene/C++/Source/Binary/binary_global.C,v 1.16 2014/10/13 08:52:45 j_novak Exp $" ;
/*
* $Id: binary_global.C,v 1.16 2014/10/13 08:52:45 j_novak Exp $
* $Log: binary_global.C,v $
* Revision 1.16 2014/10/13 08:52:45 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.15 2006/08/01 14:26:50 f_limousin
* Small changes
*
* Revision 1.14 2006/04/11 14:25:15 f_limousin
* New version of the code : improvement of the computation of some
* critical sources, estimation of the dirac gauge, helical symmetry...
*
* Revision 1.13 2005/09/18 13:13:41 f_limousin
* Extension of vphi in the compactified domain for the computation
* of J_ADM by a volume integral.
*
* Revision 1.12 2005/09/15 14:41:04 e_gourgoulhon
* The total angular momentum is now computed via a volume integral.
*
* Revision 1.11 2005/09/13 19:38:31 f_limousin
* Reintroduction of the resolution of the equations in cartesian coordinates.
*
* Revision 1.10 2005/04/08 12:36:45 f_limousin
* Just to avoid warnings...
*
* Revision 1.9 2005/02/17 17:35:00 f_limousin
* Change the name of some quantities to be consistent with other classes
* (for instance nnn is changed to nn, shift to beta, beta to lnq...)
*
* Revision 1.8 2004/07/21 11:46:24 f_limousin
* Add function mass_adm_vol() to compute the ADM mass of the system
* with a volume integral instead of a surface one.
*
* Revision 1.7 2004/05/25 14:25:53 f_limousin
* Add the virial theorem for conformally flat configurations.
*
* Revision 1.6 2004/03/31 12:44:54 f_limousin
* Minor modifs.
*
* Revision 1.5 2004/03/25 10:29:01 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.4 2004/02/27 10:25:30 f_limousin
* Modif. to avoid an error in compilation.
*
* Revision 1.3 2004/02/27 10:03:04 f_limousin
* The computation of mass_adm() and mass_komar() is now OK !
*
* Revision 1.2 2004/01/20 15:21:36 f_limousin
* First version
*
*
* $Header: /cvsroot/Lorene/C++/Source/Binary/binary_global.C,v 1.16 2014/10/13 08:52:45 j_novak Exp $
*
*/
// Headers C
#include "math.h"
// Headers Lorene
#include "nbr_spx.h"
#include "binary.h"
#include "unites.h"
#include "metric.h"
//---------------------------------//
// ADM mass //
//---------------------------------//
namespace Lorene {
double Binary::mass_adm() const {
using namespace Unites ;
if (p_mass_adm == 0x0) { // a new computation is requireed
p_mass_adm = new double ;
*p_mass_adm = 0 ;
const Map_af map0 (et[0]->get_mp()) ;
const Metric& flat = (et[0]->get_flat()) ;
Vector dpsi(0.5*(et[0]->get_lnq() -
et[0]->get_logn()).derive_cov(flat)) ;
Vector ww (0.125*(contract(et[0]->get_hij().derive_cov(flat), 1, 2)
- (et[0]->get_hij().trace(flat)).derive_con(flat))) ;
dpsi.change_triad(map0.get_bvect_spher()) ;
ww.change_triad(map0.get_bvect_spher()) ;
// ww = 0 in Dirac gauge (Eq 174 of BGGN)
Scalar integrand (dpsi(1) + 0*ww(1)) ;
*p_mass_adm = map0.integrale_surface_infini (integrand) / (-qpig/2.) ;
} // End of the case where a new computation was necessary
return *p_mass_adm ;
}
double Binary::mass_adm_vol() const {
using namespace Unites ;
double massadm ;
massadm = 0. ;
for (int i=0; i<=1; i++) { // loop on the stars
// Declaration of all fields
const Scalar& psi4 = et[i]->get_psi4() ;
Scalar psi (pow(psi4, 0.25)) ;
psi.std_spectral_base() ;
const Scalar& ener_euler = et[i]->get_ener_euler() ;
const Scalar& kcar_auto = et[i]->get_kcar_auto() ;
const Scalar& kcar_comp = et[i]->get_kcar_comp() ;
const Metric& gtilde = et[i]->get_gtilde() ;
const Metric& flat = et[i]->get_flat() ;
const Sym_tensor& hij = et[i]->get_hij() ;
const Sym_tensor& hij_auto = et[i]->get_hij_auto() ;
const Vector& dcov_logn = et[i]->get_dcov_logn() ;
const Vector& dcov_phi = et[i]->get_dcov_phi() ;
const Vector& dcov_lnq = 2*dcov_phi + dcov_logn ;
const Scalar& lnq_auto = et[i]->get_lnq_auto() ;
const Scalar& logn_auto = et[i]->get_logn_auto() ;
const Scalar& phi_auto = 0.5 * (lnq_auto - logn_auto) ;
const Tensor& dcov_hij_auto = hij_auto.derive_cov(flat) ;
const Tensor& dcov_gtilde = gtilde.cov().derive_cov(flat) ;
const Tensor& dcov_phi_auto = phi_auto.derive_cov(flat) ;
const Tensor& dcov_logn_auto = logn_auto.derive_cov(flat) ;
const Tensor& dcov_lnq_auto = lnq_auto.derive_cov(flat) ;
Tensor dcovdcov_lnq_auto = lnq_auto.derive_cov(flat).derive_cov(flat) ;
dcovdcov_lnq_auto.inc_dzpuis() ;
Tensor dcovdcov_logn_auto = logn_auto.derive_cov(flat).derive_cov(flat) ;
dcovdcov_logn_auto.inc_dzpuis() ;
// Source in IWM approximation
Scalar source = - psi4 % (qpig*ener_euler + (kcar_auto + kcar_comp)/4.)
- 0*2*contract(contract(gtilde.con(), 0, dcov_phi, 0),
0, dcov_phi_auto, 0, true) ;
// Source = 0 in IWM
source += 4*contract(hij, 0, 1, dcov_logn * dcov_phi_auto, 0, 1) +
2*contract(hij, 0, 1, dcov_phi * dcov_phi_auto, 0, 1) +
0.0625 * contract(gtilde.con(), 0, 1, contract(
dcov_hij_auto, 0, 1, dcov_gtilde, 0, 1), 0, 1) -
0.125 * contract(gtilde.con(), 0, 1, contract(dcov_hij_auto,
0, 1, dcov_gtilde, 0, 2), 0, 1) -
contract(hij,0,1,dcovdcov_lnq_auto + dcov_lnq_auto*dcov_lnq,0,1) +
contract(hij,0,1,dcovdcov_logn_auto + dcov_logn_auto*dcov_logn,0,1) ;
source = source * psi ;
source.std_spectral_base() ;
massadm += - source.integrale()/qpig ;
}
return massadm ;
}
//---------------------------------//
// Komar mass //
//---------------------------------//
double Binary::mass_kom() const {
using namespace Unites ;
if (p_mass_kom == 0x0) { // a new computation is requireed
p_mass_kom = new double ;
*p_mass_kom = 0 ;
const Tensor& logn = et[0]->get_logn() ;
const Metric& flat = (et[0]->get_flat()) ;
const Sym_tensor& hij = (et[0]->get_hij()) ;
Map_af map0 (et[0]->get_mp()) ;
Vector vect = logn.derive_con(flat) +
contract(hij, 1, logn.derive_cov(flat), 0) ;
vect.change_triad(map0.get_bvect_spher()) ;
Scalar integrant (vect(1)) ;
*p_mass_kom = map0.integrale_surface_infini (integrant) / qpig ;
} // End of the case where a new computation was necessary
return *p_mass_kom ;
}
double Binary::mass_kom_vol() const {
using namespace Unites ;
double masskom ;
masskom = 0. ;
for (int i=0; i<=1; i++) { // loop on the stars
// Declaration of all fields
const Scalar& psi4 = et[i]->get_psi4() ;
const Scalar& ener_euler = et[i]->get_ener_euler() ;
const Scalar& s_euler = et[i]->get_s_euler() ;
const Scalar& kcar_auto = et[i]->get_kcar_auto() ;
const Scalar& kcar_comp = et[i]->get_kcar_comp() ;
const Metric& gtilde = et[i]->get_gtilde() ;
const Metric& flat = et[i]->get_flat() ;
const Sym_tensor& hij = et[i]->get_hij() ;
const Scalar& logn = et[i]->get_logn_auto() + et[i]->get_logn_comp() ;
const Scalar& logn_auto = et[i]->get_logn_auto() ;
Scalar nn = exp(logn) ;
nn.std_spectral_base() ;
const Tensor& dcov_logn_auto = logn_auto.derive_cov(flat) ;
const Vector& dcov_logn = et[i]->get_dcov_logn() ;
const Vector& dcon_logn = et[i]->get_dcon_logn() ;
const Vector& dcov_phi = et[i]->get_dcov_phi() ;
Tensor dcovdcov_logn_auto = (logn_auto.derive_cov(flat))
.derive_cov(flat) ;
dcovdcov_logn_auto.inc_dzpuis() ;
Scalar source = qpig * psi4 % (ener_euler + s_euler) ;
source += psi4 % (kcar_auto + kcar_comp) ;
source += - 0*contract(dcov_logn_auto, 0, dcon_logn, 0, true)
- 2. * contract(contract(gtilde.con(), 0, dcov_phi, 0), 0,
dcov_logn_auto, 0, true) ;
source += - contract(hij, 0, 1, dcovdcov_logn_auto +
dcov_logn_auto*dcov_logn, 0, 1) ;
source = source / qpig * nn ;
source.std_spectral_base() ;
masskom += source.integrale() ;
}
return masskom ;
}
//---------------------------------//
// Total angular momentum //
//---------------------------------//
const Tbl& Binary::angu_mom() const {
using namespace Unites ;
/*
if (p_angu_mom == 0x0) { // a new computation is requireed
p_angu_mom = new Tbl(3) ;
p_angu_mom->annule_hard() ; // fills the double array with zeros
const Sym_tensor& kij_auto = et[0]->get_tkij_auto() ;
const Sym_tensor& kij_comp = et[0]->get_tkij_comp() ;
const Tensor& psi4 = et[0]->get_psi4() ;
const Map_af map0 (kij_auto.get_mp()) ;
Sym_tensor kij = (kij_auto + kij_comp) / psi4 ;
kij.change_triad(map0.get_bvect_cart()) ;
// X component
// -----------
Vector vect_x(et[0]->get_mp(), CON, map0.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
Scalar kij_1 = kij(3, i) ;
Scalar kij_2 = kij(2, i) ;
kij_1.mult_rsint() ;
Valeur vtmp = kij_1.get_spectral_va().mult_sp() ;
kij_1.set_spectral_va() = vtmp ;
kij_2.mult_r() ;
vtmp = kij_2.get_spectral_va().mult_ct() ;
kij_2.set_spectral_va() = vtmp ;
vect_x.set(i) = kij_1 - kij_2 ;
}
vect_x.change_triad(map0.get_bvect_spher()) ;
Scalar integrant_x (vect_x(1)) ;
p_angu_mom->set(0) = map0.integrale_surface_infini (integrant_x)
/ (8*M_PI) ;
// Y component
// -----------
Vector vect_y(et[0]->get_mp(), CON, map0.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
Scalar kij_1 = kij(1, i) ;
Scalar kij_2 = kij(3, i) ;
kij_1.mult_r() ;
Valeur vtmp = kij_1.get_spectral_va().mult_ct() ;
kij_1.set_spectral_va() = vtmp ;
kij_2.mult_rsint() ;
vtmp = kij_2.get_spectral_va().mult_cp() ;
kij_2.set_spectral_va() = vtmp ;
vect_y.set(i) = kij_1 - kij_2 ;
}
vect_y.change_triad(map0.get_bvect_spher()) ;
Scalar integrant_y (vect_y(1)) ;
p_angu_mom->set(1) = map0.integrale_surface_infini (integrant_y)
/ (8*M_PI) ;
// Z component
// -----------
Vector vect_z(et[0]->get_mp(), CON, map0.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
Scalar kij_1 = kij(2, i) ;
Scalar kij_2 = kij(1, i) ;
kij_1.mult_rsint() ;
Valeur vtmp = kij_1.get_spectral_va().mult_cp() ;
kij_1.set_spectral_va() = vtmp ;
kij_2.mult_rsint() ;
vtmp = kij_2.get_spectral_va().mult_sp() ;
kij_2.set_spectral_va() = vtmp ;
vect_z.set(i) = kij_1 - kij_2 ;
}
vect_z.change_triad(map0.get_bvect_spher()) ;
Scalar integrant_z (vect_z(1)) ;
p_angu_mom->set(2) = map0.integrale_surface_infini (integrant_z)
;// (8*M_PI) ;
} // End of the case where a new computation was necessary
*/
/*
if (p_angu_mom == 0x0) { // a new computation is requireed
p_angu_mom = new Tbl(3) ;
p_angu_mom->annule_hard() ; // fills the double array with zeros
p_angu_mom->set(0) = 0. ;
p_angu_mom->set(1) = 0. ;
// Alignement
double orientation_un = et[0]->get_mp().get_rot_phi() ;
assert ((orientation_un==0) || (orientation_un==M_PI)) ;
double orientation_deux = et[1]->get_mp().get_rot_phi() ;
assert ((orientation_deux==0) || (orientation_deux==M_PI)) ;
int same_orient = (orientation_un == orientation_deux) ? 1 : -1 ;
// Construction of an auxiliar grid and mapping
int nzones = et[0]->get_mp().get_mg()->get_nzone() ;
double* bornes = new double [nzones+1] ;
double courant = (et[0]->get_mp().get_ori_x()-et[0]->get_mp().get_ori_x())+1 ;
for (int i=nzones-1 ; i>0 ; i--) {
bornes[i] = courant ;
courant /= 2. ;
}
bornes[0] = 0 ;
bornes[nzones] = __infinity ;
Map_af mapping (*(et[0]->get_mp().get_mg()), bornes) ;
delete [] bornes ;
// Construction of k_total
Sym_tensor k_total (mapping, CON, mapping.get_bvect_cart()) ;
Vector shift_un (mapping, CON, mapping.get_bvect_cart()) ;
Vector shift_deux (mapping, CON, mapping.get_bvect_cart()) ;
Vector beta_un (et[0]->get_beta_auto()) ;
Vector beta_deux (et[1]->get_beta_auto()) ;
beta_un.change_triad(et[0]->get_mp().get_bvect_cart()) ;
beta_deux.change_triad(et[1]->get_mp().get_bvect_cart()) ;
beta_un.std_spectral_base() ;
beta_deux.std_spectral_base() ;
shift_un.set(1).import(beta_un(1)) ;
shift_un.set(2).import(beta_un(2)) ;
shift_un.set(3).import(beta_un(3)) ;
shift_deux.set(1).import(same_orient*beta_deux(1)) ;
shift_deux.set(2).import(same_orient*beta_deux(2)) ;
shift_deux.set(3).import(beta_deux(3)) ;
Vector shift_tot (shift_un+shift_deux) ;
shift_tot.std_spectral_base() ;
shift_tot.annule(0, nzones-2) ;
// Substract the residuals
shift_tot.inc_dzpuis(2) ;
shift_tot.dec_dzpuis(2) ;
Sym_tensor temp_gamt (et[0]->get_gtilde().cov()) ;
temp_gamt.change_triad(mapping.get_bvect_cart()) ;
Metric gamt_cart (temp_gamt) ;
k_total = shift_tot.ope_killing_conf(gamt_cart) / 2. ;
for (int lig=1 ; lig<=3 ; lig++)
for (int col=lig ; col<=3 ; col++)
k_total.set(lig, col).mult_r_ced() ;
Vector vecteur_un (mapping, CON, mapping.get_bvect_cart()) ;
for (int i=1 ; i<=3 ; i++)
vecteur_un.set(i) = k_total(1, i) ;
vecteur_un.change_triad (mapping.get_bvect_spher()) ;
Scalar integrant_un (vecteur_un(1)) ;
Vector vecteur_deux (mapping, CON, mapping.get_bvect_cart()) ;
for (int i=1 ; i<=3 ; i++)
vecteur_deux.set(i) = k_total(2, i) ;
vecteur_deux.change_triad (mapping.get_bvect_spher()) ;
Scalar integrant_deux (vecteur_deux(1)) ;
// Multiplication by y and x :
integrant_un.set_spectral_va() = integrant_un.get_spectral_va()
.mult_st() ;
integrant_un.set_spectral_va() = integrant_un.get_spectral_va()
.mult_sp() ;
integrant_deux.set_spectral_va() = integrant_deux.get_spectral_va()
.mult_st() ;
integrant_deux.set_spectral_va() = integrant_deux.get_spectral_va()
.mult_cp() ;
p_angu_mom->set(2) = mapping.integrale_surface_infini (-integrant_un
+integrant_deux) / (2*qpig) ;
}
*/
if (p_angu_mom == 0x0) { // a new computation is requireed
p_angu_mom = new Tbl(3) ;
p_angu_mom->annule_hard() ; // fills the double array with zeros
// Reference Cartesian vector basis of the Absolute frame
Base_vect_cart bvect_ref(0.) ; // 0. = parallel to the Absolute frame
for (int i=0; i<=1; i++) { // loop on the stars
const Map& mp = et[i]->get_mp() ;
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
// Function exp(-(r-r_0)^2/sigma^2)
// --------------------------------
double r0 = mp.val_r(nzm1-1, 1, 0, 0) ;
double sigma = 1.*r0 ;
Scalar rr (mp) ;
rr = mp.r ;
Scalar ff (mp) ;
ff = exp( -(rr - r0)*(rr - r0)/sigma/sigma ) ;
for (int ii=0; ii<nzm1; ii++)
ff.set_domain(ii) = 1. ;
ff.set_outer_boundary(nzm1, 0) ;
ff.std_spectral_base() ;
// Azimuthal vector d/dphi
Vector vphi(mp, CON, bvect_ref) ;
Scalar yya (mp) ;
yya = mp.ya ;
Scalar xxa (mp) ;
xxa = mp.xa ;
vphi.set(1) = - yya * ff ; // phi^X
vphi.set(2) = xxa * ff ;
vphi.set(3) = 0 ;
vphi.set(1).set_outer_boundary(nzm1, 0) ;
vphi.set(2).set_outer_boundary(nzm1, 0) ;
vphi.std_spectral_base() ;
vphi.change_triad(mp.get_bvect_cart()) ;
// Matter part
// -----------
const Scalar& ee = et[i]->get_ener_euler() ; // E
const Scalar& pp = et[i]->get_press() ; // p
const Scalar& psi4 = et[i]->get_psi4() ; // Psi^4
Scalar rho = pow(psi4, double(2.5)) * (ee+pp) ;
rho.std_spectral_base() ;
Vector jmom = rho * (et[i]->get_u_euler()) ;
const Metric& gtilde = et[i]->get_gtilde() ;
const Metric_flat flat (mp.flat_met_cart()) ;
Vector vphi_cov = vphi.up_down(gtilde) ;
Scalar integrand = contract(jmom, 0, vphi_cov, 0) ;
p_angu_mom->set(2) += integrand.integrale() ;
// Extrinsic curvature part (0 if IWM)
// -----------------------------------
const Sym_tensor& aij = et[i]->get_tkij_auto() ;
rho = pow(psi4, double(1.5)) ;
rho.std_spectral_base() ;
// Construction of D_k \Phi^i
Itbl type (2) ;
type.set(0) = CON ;
type.set(1) = COV ;
Tensor dcov_vphi (mp, 2, type, mp.get_bvect_cart()) ;
dcov_vphi.set(1,1) = 0. ;
dcov_vphi.set(2,1) = ff ;
dcov_vphi.set(3,1) = 0. ;
dcov_vphi.set(2,2) = 0. ;
dcov_vphi.set(3,2) = 0. ;
dcov_vphi.set(3,3) = 0. ;
dcov_vphi.set(1,2) = -ff ;
dcov_vphi.set(1,3) = 0. ;
dcov_vphi.set(2,3) = 0. ;
dcov_vphi.inc_dzpuis(2) ;
Connection gamijk (gtilde, flat) ;
const Tensor& deltaijk = gamijk.get_delta() ;
// Computation of \tilde D_i \tilde \Phi_j
Sym_tensor kill_phi (mp, COV, mp.get_bvect_cart()) ;
kill_phi = contract(gtilde.cov(), 1, dcov_vphi +
contract(deltaijk, 2, vphi, 0), 0) +
contract(dcov_vphi + contract(deltaijk, 2, vphi, 0), 0,
gtilde.cov(), 1) ;
integrand = rho * contract(aij, 0, 1, kill_phi, 0, 1) ;
p_angu_mom->set(2) += integrand.integrale() / (4*qpig) ;
} // End of the loop on the stars
} // End of the case where a new computation was necessary
return *p_angu_mom ;
}
//---------------------------------//
// Total energy //
//---------------------------------//
double Binary::total_ener() const {
/*
if (p_total_ener == 0x0) { // a new computation is requireed
p_total_ener = new double ;
*p_total_ener = mass_adm() - star1.mass_b() - star2.mass_b() ;
} // End of the case where a new computation was necessary
*/
return *p_total_ener ;
}
//---------------------------------//
// Error on the virial theorem //
//---------------------------------//
double Binary::virial() const {
if (p_virial == 0x0) { // a new computation is requireed
p_virial = new double ;
*p_virial = 1. - mass_kom() / mass_adm() ;
}
return *p_virial ;
}
}
|