1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/*
* Method of class Binary_xcts to compute the orbital angular velocity
* {\tt omega} and the position of the rotation axis {\tt x_axe}.
* (See file binary_xcts.h for documentation)
*/
/*
* Copyright (c) 2010 Michal Bejger
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char binary_orbit_xcts_C[] = "$Header: /cvsroot/Lorene/C++/Source/Binary_xcts/binary_orbit_xcts.C,v 1.14 2014/10/24 14:10:24 j_novak Exp $" ;
/*
* $Id: binary_orbit_xcts.C,v 1.14 2014/10/24 14:10:24 j_novak Exp $
* $Log: binary_orbit_xcts.C,v $
* Revision 1.14 2014/10/24 14:10:24 j_novak
* Minor change to prevent weird error from g++-4.8...
*
* Revision 1.13 2014/10/13 08:52:45 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.12 2014/10/06 15:12:59 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.11 2011/03/30 13:14:27 m_bejger
* Psi and chi rewritten using auto and comp parts to improve the convergence (in all the remaining fields, not only logn)
*
* Revision 1.10 2011/03/28 17:13:37 m_bejger
* logn in dnulg stated using Psi1,2 and chi1,2
*
* Revision 1.9 2011/03/27 16:41:19 e_gourgoulhon
* -- Corrected sign of ny and dny for star no. 2
* -- Added output via new function save_profile for graphics
*
* Revision 1.8 2011/03/27 14:58:48 m_bejger
* dnulg by means of dsdx(); rearrangements to use primary variables
*
* Revision 1.7 2011/03/25 16:28:36 e_gourgoulhon
* Still in progress
*
* Revision 1.6 2010/12/09 10:41:20 m_bejger
* For testing; not sure if working properly
*
* Revision 1.5 2010/10/26 19:45:45 m_bejger
* Cleanup
*
* Revision 1.4 2010/07/16 16:27:19 m_bejger
* This version is basically a copy of the one used by Binaire (binaire_orbite.C)
*
* Revision 1.3 2010/06/17 14:15:41 m_bejger
* Using method get_Psi()
*
* Revision 1.2 2010/06/15 07:57:30 m_bejger
* Minor corrections
*
* Revision 1.1 2010/05/04 07:35:54 m_bejger
* Initial version
*
* $Header: /cvsroot/Lorene/C++/Source/Binary_xcts/binary_orbit_xcts.C,v 1.14 2014/10/24 14:10:24 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "binary_xcts.h"
#include "eos.h"
#include "param.h"
#include "utilitaires.h"
#include "unites.h"
#include "graphique.h"
namespace Lorene {
double fonc_binary_xcts_axe(double , const Param& ) ;
double fonc_binary_xcts_orbit(double , const Param& ) ;
//******************************************************************************
void Binary_xcts::orbit(double fact_omeg_min,
double fact_omeg_max,
double& xgg1,
double& xgg2) {
using namespace Unites ;
//-------------------------------------------------------------
// Evaluation of various quantities at the center of each star
//-------------------------------------------------------------
double dnulg[2], asn2[2], dasn2[2], ny[2], dny[2], npn[2], dnpn[2], xgg[2] ;
double nyso[2], dnyso[2], npnso2[2], dnpnso2[2], ori_x[2] ;
for (int i=0; i<2; i++) {
const Map& mp = et[i]->get_mp() ;
const Metric& flat = et[i]->get_flat() ;
//------------------------------------------------------------------
// Recasting Phi and chi to manifestly equal auto and comp part
// - more fortunate from the point of view of Omega computation
//------------------------------------------------------------------
Scalar chi = et[i]->get_chi_auto() + et[i]->get_chi_comp() + 1 ;
Scalar Psi = et[i]->get_Psi_auto() + et[i]->get_Psi_comp() + 1 ;
Scalar logn = log(chi) - log(Psi) ;
logn.std_spectral_base() ;
// Sign convention for shift (beta^i = - N^i)
Vector shift = - ( et[i]->get_beta() ) ;
shift.change_triad(et[i]->mp.get_bvect_cart()) ;
//------------------------------------------------------------------
// d/dX( log(N) + log(Gamma) )
// in the center of the star ---> dnulg[i]
//------------------------------------------------------------------
// Facteur de passage x --> X :
double factx ;
if (fabs(mp.get_rot_phi()) < 1.e-14) factx = 1. ;
else {
if (fabs(mp.get_rot_phi() - M_PI) < 1.e-14) {
factx = - 1. ;
} else {
cout << "Binary_xcts::orbit : unknown value of rot_phi !" << endl ;
abort() ;
}
}
Scalar tmp = logn + et[i]->get_loggam() ;
dnulg[i] = factx*tmp.dsdx().val_grid_point(0, 0, 0, 0) ;
// For graphical outputs:
Scalar tgraph = logn - log( (1. + et[i]->get_chi_auto()) / (1. + et[i]->get_Psi_auto()) ) ;
// tmp = log( (1. + et[i]->get_chi_comp()) / (1. + et[i]->get_Psi_comp()) ) ;
tgraph.std_spectral_base() ;
save_profile(tgraph, 0., 10., 0.5*M_PI, 0., "prof_logn.d") ;
save_profile(et[i]->get_loggam(), 0., 1.8, 0.5*M_PI, 0., "prof_loggam.d") ;
//------------------------------------------------------------------
// Psi^4/N^2 = in the center of the star ---> asn2[i]
//------------------------------------------------------------------
Scalar Psi6schi2 = pow(Psi, 6)/(chi % chi) ;
Psi6schi2.std_spectral_base() ;
asn2[i] = Psi6schi2.val_grid_point(0, 0, 0, 0) ;
//------------------------------------------------------------------
// d/dX(A^2/N^2) in the center of the star ---> dasn2[i]
//------------------------------------------------------------------
dasn2[i] = Psi6schi2.dsdx().val_grid_point(0, 0, 0, 0) ;
//------------------------------------------------------------------
// N^Y in the center of the star ---> ny[i]
//------------------------------------------------------------------
ny[i] = factx*shift(2).val_grid_point(0, 0, 0, 0) ;
nyso[i] = ny[i] / omega ;
//------------------------------------------------------------------
// dN^Y/dX in the center of the star ---> dny[i]
//------------------------------------------------------------------
dny[i] = shift(2).dsdx().val_grid_point(0, 0, 0, 0) ;
dnyso[i] = dny[i] / omega ;
//------------------------------------------------------------------
// (N^X)^2 + (N^Y)^2 + (N^Z)^2
// in the center of the star ---> npn[i]
//------------------------------------------------------------------
tmp = contract(shift, 0, shift.up_down(flat), 0) ;
npn[i] = tmp.val_grid_point(0, 0, 0, 0) ;
npnso2[i] = npn[i] / omega / omega ;
//------------------------------------------------------------------
// d/dX( (N^X)^2 + (N^Y)^2 + (N^Z)^2 )
// in the center of the star ---> dnpn[i]
//------------------------------------------------------------------
dnpn[i] = factx * tmp.dsdx().val_grid_point(0, 0, 0, 0) ;
dnpnso2[i] = dnpn[i] / omega / omega ;
cout << "Binary_xcts::orbit: central d(nu+log(Gam))/dX : "
<< dnulg[i] << endl ;
cout << "Binary_xcts::orbit: central A^2/N^2 : "
<< asn2[i] << endl ;
cout << "Binary_xcts::orbit: central d(A^2/N^2)/dX : "
<< dasn2[i] << endl ;
cout << "Binary_xcts::orbit: central N^Y : "
<< ny[i] << endl ;
cout << "Binary_xcts::orbit: central dN^Y/dX : "
<< dny[i] << endl ;
cout << "Binary_xcts::orbit: central N.N : "
<< npn[i] << endl ;
cout << "Binary_xcts::orbit: central d(N.N)/dX : "
<< dnpn[i] << endl ;
ori_x[i] = (et[i]->get_mp()).get_ori_x() ;
xgg[i] = factx * (et[i]->xa_barycenter() - ori_x[i]) ;
}
xgg1 = xgg[0] ;
xgg2 = xgg[1] ;
//---------------------------------
// axis of rotation
//---------------------------------
int relat = 1 ;
double ori_x1 = ori_x[0] ;
double ori_x2 = ori_x[1] ;
if ( et[0]->get_eos() == et[1]->get_eos() &&
fabs( et[0]->get_ent().val_grid_point(0,0,0,0) -
et[1]->get_ent().val_grid_point(0,0,0,0) ) < 1.e-14 ) {
x_axe = 0. ;
} else {
Param paraxe ;
paraxe.add_int(relat) ;
paraxe.add_double( ori_x1, 0) ;
paraxe.add_double( ori_x2, 1) ;
paraxe.add_double( dnulg[0], 2) ;
paraxe.add_double( dnulg[1], 3) ;
paraxe.add_double( asn2[0], 4) ;
paraxe.add_double( asn2[1], 5) ;
paraxe.add_double( dasn2[0], 6) ;
paraxe.add_double( dasn2[1], 7) ;
paraxe.add_double( nyso[0], 8) ;
paraxe.add_double( nyso[1], 9) ;
paraxe.add_double( dnyso[0], 10) ;
paraxe.add_double( dnyso[1], 11) ;
paraxe.add_double( npnso2[0], 12) ;
paraxe.add_double( npnso2[1], 13) ;
paraxe.add_double( dnpnso2[0], 14) ;
paraxe.add_double( dnpnso2[1], 15) ;
int nitmax_axe = 200 ;
int nit_axe ;
double precis_axe = 1.e-13 ;
x_axe = zerosec(fonc_binary_xcts_axe, paraxe, 0.9*ori_x1, 0.9*ori_x2,
precis_axe, nitmax_axe, nit_axe) ;
cout << "Binary_xcts::orbit : Number of iterations in zerosec for x_axe : "
<< nit_axe << endl ;
}
cout << "Binary_xcts::orbit: x_axe [km] : " << x_axe / km << endl ;
//-------------------------------------
// Calcul de la vitesse orbitale
//-------------------------------------
Param parf ;
parf.add_int(relat) ;
parf.add_double( ori_x1, 0) ;
parf.add_double( dnulg[0], 1) ;
parf.add_double( asn2[0], 2) ;
parf.add_double( dasn2[0], 3) ;
parf.add_double( ny[0], 4) ;
parf.add_double( dny[0], 5) ;
parf.add_double( npn[0], 6) ;
parf.add_double( dnpn[0], 7) ;
parf.add_double( x_axe, 8) ;
double omega1 = fact_omeg_min * omega ;
double omega2 = fact_omeg_max * omega ;
cout << "Binary_xcts::orbit: omega1, omega2 [rad/s] : "
<< omega1 * f_unit << " " << omega2 * f_unit << endl ;
// Search for the various zeros in the interval [omega1, omega2]
// ------------------------------------------------------------
int nsub = 50 ; // total number of subdivisions of the interval
Tbl* azer = 0x0 ;
Tbl* bzer = 0x0 ;
zero_list(fonc_binary_xcts_orbit, parf, omega1, omega2, nsub,
azer, bzer) ;
// Search for the zero closest to the previous value of omega
// ----------------------------------------------------------
double omeg_min, omeg_max ;
int nzer = azer->get_taille() ; // number of zeros found by zero_list
cout << "Binary_xcts:orbit : " << nzer <<
" zero(s) found in the interval [omega1, omega2]." << endl ;
cout << "omega, omega1, omega2 : " << omega << " " << omega1
<< " " << omega2 << endl ;
cout << "azer : " << *azer << endl ;
cout << "bzer : " << *bzer << endl ;
if (nzer == 0) {
cout <<
"Binary_xcts::orbit: WARNING : no zero detected in the interval"
<< endl << " [" << omega1 * f_unit << ", "
<< omega2 * f_unit << "] rad/s !" << endl ;
omeg_min = omega1 ;
omeg_max = omega2 ;
}
else {
double dist_min = fabs(omega2 - omega1) ;
int i_dist_min = -1 ;
for (int i=0; i<nzer; i++) {
// Distance of previous value of omega from the center of the
// interval [azer(i), bzer(i)]
double dist = fabs( omega - 0.5 * ( (*azer)(i) + (*bzer)(i) ) ) ;
if (dist < dist_min) {
dist_min = dist ;
i_dist_min = i ;
}
}
omeg_min = (*azer)(i_dist_min) ;
omeg_max = (*bzer)(i_dist_min) ;
}
delete azer ; // Tbl allocated by zero_list
delete bzer ; //
cout << "Binary_xcts::orbit : interval selected for the search of the zero : "
<< endl << " [" << omeg_min << ", " << omeg_max << "] = ["
<< omeg_min * f_unit << ", " << omeg_max * f_unit << "] rad/s " << endl ;
// Computation of the zero in the selected interval by the secant method
// ---------------------------------------------------------------------
int nitermax = 200 ;
int niter ;
double precis = 1.e-13 ;
omega = zerosec_b(fonc_binary_xcts_orbit, parf, omeg_min, omeg_max,
precis, nitermax, niter) ;
cout << "Binary_xcts::orbit : Number of iterations in zerosec for omega : "
<< niter << endl ;
cout << "Binary_xcts::orbit : omega [rad/s] : "
<< omega * f_unit << endl ;
}
//*************************************************
// Function used for search of the rotation axis
//*************************************************
double fonc_binary_xcts_axe(double x_rot, const Param& paraxe) {
int relat = paraxe.get_int() ;
double ori_x1 = paraxe.get_double(0) ;
double ori_x2 = paraxe.get_double(1) ;
double dnulg_1 = paraxe.get_double(2) ;
double dnulg_2 = paraxe.get_double(3) ;
double asn2_1 = paraxe.get_double(4) ;
double asn2_2 = paraxe.get_double(5) ;
double dasn2_1 = paraxe.get_double(6) ;
double dasn2_2 = paraxe.get_double(7) ;
double nyso_1 = paraxe.get_double(8) ;
double nyso_2 = paraxe.get_double(9) ;
double dnyso_1 = paraxe.get_double(10) ;
double dnyso_2 = paraxe.get_double(11) ;
double npnso2_1 = paraxe.get_double(12) ;
double npnso2_2 = paraxe.get_double(13) ;
double dnpnso2_1 = paraxe.get_double(14) ;
double dnpnso2_2 = paraxe.get_double(15) ;
double om2_star1 ;
double om2_star2 ;
double x1 = ori_x1 - x_rot ;
double x2 = ori_x2 - x_rot ;
if (relat == 1) {
double andan_1 = 0.5 * dasn2_1 + asn2_1 * dnulg_1 ;
double andan_2 = 0.5 * dasn2_2 + asn2_2 * dnulg_2 ;
double bpb_1 = x1 * x1 - 2. * nyso_1 * x1 + npnso2_1 ;
double bpb_2 = x2 * x2 - 2. * nyso_2 * x2 + npnso2_2 ;
double cpc_1 = 0.5 * dnpnso2_1 + x1 * (1. - dnyso_1) - nyso_1 ;
double cpc_2 = 0.5 * dnpnso2_2 + x2 * (1. - dnyso_2) - nyso_2 ;
om2_star1 = dnulg_1 / (andan_1 * bpb_1 + asn2_1 * cpc_1) ;
om2_star2 = dnulg_2 / (andan_2 * bpb_2 + asn2_2 * cpc_2) ;
}
else {
om2_star1 = dnulg_1 / x1 ;
om2_star2 = dnulg_2 / x2 ;
}
return om2_star1 - om2_star2 ;
}
//*****************************************************************************
// Fonction utilisee pour la recherche de omega par la methode de la secante
//*****************************************************************************
double fonc_binary_xcts_orbit(double om, const Param& parf) {
int relat = parf.get_int() ;
double xc = parf.get_double(0) ;
double dnulg = parf.get_double(1) ;
double asn2 = parf.get_double(2) ;
double dasn2 = parf.get_double(3) ;
double ny = parf.get_double(4) ;
double dny = parf.get_double(5) ;
double npn = parf.get_double(6) ;
double dnpn = parf.get_double(7) ;
double x_axe = parf.get_double(8) ;
double xx = xc - x_axe ;
double om2 = om*om ;
double dphi_cent ;
if (relat == 1) {
double bpb = om2 * xx*xx - 2*om * ny * xx + npn ;
dphi_cent = ( asn2* ( om* (ny + xx*dny) - om2*xx - 0.5*dnpn )
- 0.5*bpb* dasn2 )
/ ( 1 - asn2 * bpb ) ;
}
else {
dphi_cent = - om2*xx ;
}
return dnulg + dphi_cent ;
}
}
|