File: compobj_QI_global.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (565 lines) | stat: -rw-r--r-- 15,681 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 * Method of class Compobj_QI to compute the location of the ISCO
 *
 * (see file compobj.h for documentation).
 *
 */

/*
 *   Copyright (c) 2012 Odele Straub, Claire Some, Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char compobj_QI_global_C[] = "$Header: /cvsroot/Lorene/C++/Source/Compobj/compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $" ;

/*
 * $Id: compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $
 * $Log: compobj_QI_global.C,v $
 * Revision 1.11  2014/10/13 08:52:49  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.10  2014/10/06 15:13:04  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.9  2014/02/12 16:46:54  o_straub
 * Rmb : cleaner prompt
 *
 * Revision 1.8  2014/01/14 20:52:53  e_gourgoulhon
 * ISCO searched downwards
 *
 * Revision 1.7  2014/01/14 16:35:46  e_gourgoulhon
 * Changed output printing in ISCO search
 *
 * Revision 1.6  2013/11/13 11:20:01  j_novak
 * Minor correction to compile with older versions of g++
 *
 * Revision 1.5  2013/07/25 19:44:11  o_straub
 * calculation of the marginally bound radius
 *
 * Revision 1.4  2013/04/04 15:32:32  e_gourgoulhon
 * Better computation of the ISCO
 *
 * Revision 1.3  2012/11/22 16:04:51  c_some
 * Minor modifications
 *
 * Revision 1.2  2012/11/21 14:53:45  c_some
 * corrected mom_euler
 *
 * Revision 1.1  2012/11/16 16:14:11  c_some
 * New class Compobj_QI
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Compobj/compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene
#include "compobj.h"
#include "param.h"
#include "utilitaires.h"

namespace Lorene {
double funct_compobj_QI_isco(double, const Param&) ; 
double funct_compobj_QI_rmb(double, const Param&) ;


			//----------------------------//
			//	Angular momentum      //
			//----------------------------//

double Compobj_QI::angu_mom() const {

    if (p_angu_mom == 0x0) {    // a new computation is required
	
		cerr << "Compobj_QI::angu_mom() : not implemented yet !" << endl ; //## provisory
		abort() ; 
    }
    
    return *p_angu_mom ; 

}



//=============================================================================
//		r_isco()
//=============================================================================

double Compobj_QI::r_isco(int lmin, ostream* ost) const {

    if (p_r_isco == 0x0) {    // a new computation is required

    // First and second derivatives of metric functions
    // ------------------------------------------------

    int nzm1 = mp.get_mg()->get_nzone() - 1 ;
    Scalar dnphi = nphi.dsdr() ;
    dnphi.annule_domain(nzm1) ;
    Scalar ddnphi = dnphi.dsdr() ;    	// d^2/dr^2 N^phi

    Scalar tmp = nn.dsdr() ;
    tmp.annule_domain(nzm1) ;
    Scalar ddnnn = tmp.dsdr() ; 		// d^2/dr^2 N

    tmp = bbb.dsdr() ;
    tmp.annule_domain(nzm1) ;
    Scalar ddbbb = tmp.dsdr() ; 		// d^2/dr^2 B

    // Constructing the velocity of a particle corotating with the star
    // ----------------------------------------------------------------

    Scalar bdlog = bbb.dsdr() / bbb ;
    Scalar ndlog = nn.dsdr() / nn ;
    Scalar bsn = bbb / nn ;

    Scalar r(mp) ;
    r = mp.r ;

    Scalar r2= r*r ;

    bdlog.annule_domain(nzm1) ;
    ndlog.annule_domain(nzm1) ;
    bsn.annule_domain(nzm1) ;
    r2.annule_domain(nzm1) ;

    // ucor_plus - the velocity of corotating particle on the circular orbit
    Scalar ucor_plus = (r2 * bsn * dnphi +
        sqrt ( r2 * r2 * bsn *bsn * dnphi * dnphi +
		4 * r2 * bdlog * ndlog + 4 * r * ndlog) ) /
		2 / (1 + r * bdlog ) ;

    Scalar factor_u2 = r2 * (2 * ddbbb / bbb - 2 * bdlog * bdlog +
    					  4 * bdlog * ndlog ) +
       2 * r2 * r2 * bsn * bsn * dnphi * dnphi +
       4 * r * ( ndlog - bdlog ) - 6 ;

    Scalar factor_u1 = 2 * r * r2 * bsn * ( 2 * ( ndlog - bdlog ) *
       				dnphi - ddnphi ) ;

    Scalar factor_u0 = - r2 * ( 2 * ddnnn / nn - 2 * ndlog * ndlog +
					 4 * bdlog * ndlog ) ;

    // Scalar field the zero of which will give the marginally stable orbit
    Scalar orbit = factor_u2 * ucor_plus * ucor_plus +
				factor_u1 * ucor_plus + factor_u0 ;
    orbit.std_spectral_base() ;
    
    // Search for the zero
    // -------------------

    double r_ms, theta_ms, phi_ms, xi_ms, 
    	   xi_min = -1, xi_max = 1; 
  
    int l_ms = lmin, l ;
    bool find_status = false ; 

    const Valeur& vorbit = orbit.get_spectral_va() ;
        
    // Preliminary location of the zero
    // of the orbit function with an error = 0.01
    theta_ms = M_PI / 2. ; // pi/2
    phi_ms = 0. ;

    for(l = nzm1-1; l >= lmin; l--) { 

    xi_min = -1. ;
    xi_max = 1. ;

    double resloc_old ;
    double xi_f = xi_min;
    
    double resloc = vorbit.val_point(l, xi_min, theta_ms, phi_ms) ;
	
	for (int iloc=0; iloc<200; iloc++) {
		xi_f = xi_f + 0.01 ;
     	resloc_old = resloc ;
     	resloc = vorbit.val_point(l, xi_f, theta_ms, phi_ms) ;
     	if ( resloc * resloc_old < double(0) ) {
			xi_min = xi_f - 0.01 ;
			xi_max = xi_f ;
			l_ms = l ; 
			find_status = true ;  
			break ;
		} 
		
  	  }
      if (find_status) break ; 
    } 
  	
    Param par_ms ;
    par_ms.add_int(l_ms) ;
    par_ms.add_scalar(orbit) ;
    


  	if(find_status) { 
  	    
        
     	double precis_ms = 1.e-12 ;    // precision in the determination of xi_ms
									   
     	int nitermax_ms = 100 ;	       // max number of iterations

     	int niter ;
     	xi_ms = zerosec(funct_compobj_QI_isco, par_ms, xi_min, xi_max,
     					precis_ms, nitermax_ms, niter) ;     					
  		if (ost != 0x0) {
            *ost << "ISCO search: " << endl ; 
            *ost << "    Domain number: " << l_ms << endl ; 
            *ost << "    xi_min, xi_max : " << xi_min << " , " << xi_max << endl ; 
     		*ost << "    number of iterations used in zerosec: " << niter << endl ;
     		*ost << "    zero found at xi = " << xi_ms << endl ;
        }

      	r_ms = mp.val_r(l_ms, xi_ms, theta_ms, phi_ms) ;
  	
	} else { 
		
		// ISCO not found
		r_ms = -1 ; 
	        xi_ms = -1 ; 
	        l_ms = lmin ; 
	    
	} 
  	
    p_r_isco = new double (r_ms) ;

//     p_r_isco = new double (
// 		(bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) * r_ms
//   					  ) ;

	// Determination of the frequency at the marginally stable orbit
  	// -------------------------------------------------------------				

	ucor_plus.std_spectral_base() ;
	double ucor_msplus = (ucor_plus.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms,
												  phi_ms) ;
	double nobrs = (bsn.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
	double nphirs = (nphi.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
	
 	p_f_isco = new double ( ( ucor_msplus / nobrs / r_ms + nphirs ) /
                       			(double(2) * M_PI) ) ;

	// Specific angular momentum on ms orbit
	// -------------------------------------				
	p_lspec_isco=new double (ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
	((bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms );

	// Specific energy on ms orbit
	// ---------------------------			
	p_espec_isco=new double (( 1./nobrs / r_ms / ucor_msplus  + nphirs) *
	(ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
	((bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms ));
	

    }  // End of computation

    return *p_r_isco ;

}



//=============================================================================
//		f_isco()
//=============================================================================

double Compobj_QI::f_isco(int lmin) const {

    if (p_f_isco == 0x0) {    // a new computation is required

    	r_isco(lmin) ; 		// f_isco is computed in the method r_isco()

    	assert(p_f_isco != 0x0) ;
    }

    return *p_f_isco ;

}

//=============================================================================
//		lspec_isco()
//=============================================================================

double Compobj_QI::lspec_isco(int lmin) const {

    if (p_lspec_isco == 0x0) {    // a new computation is required

    	r_isco(lmin) ;    	// lspec_isco is computed in the method r_isco()

    	assert(p_lspec_isco != 0x0) ;
    }

    return *p_lspec_isco ;

}

//=============================================================================
//		espec_isco()
//=============================================================================

double Compobj_QI::espec_isco(int lmin) const {

    if (p_espec_isco == 0x0) {    // a new computation is required

    	r_isco(lmin) ;   	// espec_isco is computed in the method r_isco()

    	assert(p_espec_isco != 0x0) ;
    }

    return *p_espec_isco ;

}





//=============================================================================
//		r_mb()
//=============================================================================

double Compobj_QI::r_mb(int lmin, ostream* ost) const {

    if (p_r_mb == 0x0) {    // a new computation is required

    // Coefficients of the effective potential (A) and its derivative (B)
    // ------------------------------------------------
     
    int nzm1 = mp.get_mg()->get_nzone() - 1 ;   
    Scalar r(mp) ;
    r = mp.r ;
    Scalar r2 = r*r ;
    r2.annule_domain(nzm1) ;

    Scalar ndn = nn*nn.dsdr() ;
    ndn.annule_domain(nzm1) ;
     

    // Scalar V_eff  = A1 + A2 * E^2 + A3 * E * L + A4 * L^2 ;
    // Scalar dV_eff = B1 + B2 * E^2 + B3 * E * L + B4 * L^2 ;

    Scalar A1 =-bbb*bbb * nn*nn * r2 ;
    Scalar A2 = bbb*bbb * r2 ;
    Scalar A3 =-2. * bbb*bbb *  r2 * nphi ;
    Scalar A4 =-nn*nn + bbb*bbb * r2 * nphi*nphi ;

    Scalar B1 =-2.*r * bbb*bbb * nn*nn - 2.*r2 * bbb*bbb.dsdr() * nn*nn - 2.*r2 * bbb*bbb * nn*nn.dsdr() ;
    Scalar B2 = 2.*r * bbb*bbb + 2.*r2 * bbb*bbb.dsdr() ;
    Scalar B3 =-2.*nphi*B2 - 2.*r2 * bbb*bbb * nphi.dsdr() ;
    Scalar B4 = 2.*r * bbb*bbb * nphi*nphi + 2.*r2 * bbb*bbb.dsdr() * nphi*nphi - 2.*ndn + 2.*r2 * bbb*bbb * nphi*nphi.dsdr() ;

    
    Scalar C1 = (A1 * B3 - A3 * B1) ;
    Scalar C2 = (A2 * B3 - A3 * B2) ;
    Scalar C3 = (A4 * B3 - A3 * B4) ;


    Scalar D1 = B4 * C1 - B1 * C3 ; 
    Scalar D2 = B4 * C2 - B2 * C3 ; 
    Scalar D3 = B3 * B3 * C1 * C3 ;
    Scalar D4 = B3 * B3 * C2 * C3 ;



     


    // Constructing the orbital energy of a particle corotating with the star
    // ----------------------------------------------------------------

    /* B3 * V_eff - A3 * dV_eff = 0. ;         // solve eq. for L

     Scalar L = sqrt((C1 + C2 * E2) / C3) ;    // substitute into the eq. dVeff=0, then solve for E

     Scalar EE = (-(2.*D1*D2 + D3) + sqrt((2.*D1*D2 + D3) * (2.*D1*D2 + D3) - 4.*D1*D1 * (D2*D2 + 
            D4))) / (2.*(D2*D2 + D4)) ;        // solve eq. EE = 1 for r 
   */


    Scalar bound_orbit = -(2.*D1*D2 + D3) - sqrt((2.*D1*D2 + D3) * (2.*D1*D2 + D3) - 4.*D1*D1 * 
                             (D2*D2 + D4)) - 2.*(D2*D2 + D4) ;


    // cout << "bound_orbit :" << bound_orbit << endl ;

    bound_orbit.std_spectral_base() ;
    


    // Search for the zero
    // -------------------

    const int noz(10) ;          // number of zeros    
    double zeros[2][noz] ; // define array for zeros
    int i = 0 ;            // counter
    int l ;                // number of domain

    double rmb, theta_mb, phi_mb, xi_mb;
    double xi_min = -1, xi_max = 1 ; 
  
    const Valeur& vorbit = bound_orbit.get_spectral_va() ;
        

    // Preliminary location of the zero
    // of the bound_orbit function with an error = dx

    double dx = 0.001 ; 
    
    theta_mb = M_PI / 2. ; 
    phi_mb = 0. ;


    for(l = lmin; l <= nzm1; l++) { 

        xi_min = -1. ;

        double resloc_old ;
        double xi_f = xi_min;
    
        double resloc = vorbit.val_point(l, xi_f, theta_mb, phi_mb) ;

        while(xi_f <= xi_max) { 

		    xi_f = xi_f + dx ;

     	    resloc_old = resloc ;
     	    resloc = vorbit.val_point(l, xi_f, theta_mb, phi_mb) ;

         	if ( resloc * resloc_old < double(0) ) {

                zeros[0][i] = xi_f ;   // xi_max
                zeros[1][i] = l ;      // domain number l  
                i++ ;         

            }

        }         

    }
 


    int number_of_zeros = i ;

    cout << "number of zeros: " << number_of_zeros << endl ;


    double precis_mb = 1.e-9 ;   // precision in the determination of xi_mb: 1.e-12
				                  

    int nitermax_mb = 100 ;	  // max number of iterations


    for(int i = 0; i < number_of_zeros; i++) {

    	//cout << i << " " << zeros[0][i] << " " << zeros[1][i] << endl ;

    	int l_mb = int(zeros[1][i]) ;
    	xi_max = zeros[0][i] ; 
    	xi_min = xi_max - dx ;

        Param par_mb ;
        par_mb.add_scalar(bound_orbit) ;
        par_mb.add_int(l_mb) ; 

        int niter ;
        xi_mb = zerosec(funct_compobj_QI_rmb, par_mb, xi_min, xi_max, precis_mb, nitermax_mb, niter) ;     					
      	if (ost != 0x0) {
            *ost << "RMB search: " << endl ; 
            *ost << "    Domain number: " << l_mb << endl ; 
            *ost << "    xi_min, xi_max : " << xi_min << " , " << xi_max << endl ; 
            *ost << "    number of iterations used in zerosec: " << niter << endl ;
            *ost << "    zero found at xi = " << xi_mb << endl ;
        }

    	if (niter < nitermax_mb) {
            double zero_mb = mp.val_r(l_mb, xi_mb, theta_mb, phi_mb) ;
    		//double r_hor = radius_hor(0); // set to 1 in the condition below
    	 	double r_ms = r_isco(0) ;
    	    if (zero_mb < (1 + r_ms)/2){
                
                rmb = zero_mb ;
            }
    	} 
    }	

    p_r_mb = new double (rmb) ;

    //delete [] zeros ; not used, causes "core dump" in Code kerr_qi
    
    }  // End of computation

    
    return *p_r_mb ;
   
}







//=============================================================================
//	Function used to locate the MS orbit
//=============================================================================


double funct_compobj_QI_isco(double xi, const Param& par){

    // Retrieval of the information:
    int l_ms = par.get_int() ;
    const Scalar& orbit = par.get_scalar() ;
    const Valeur& vorbit = orbit.get_spectral_va() ;

    // Value et the desired point
    double theta = M_PI / 2. ;
    double phi = 0 ;
    return vorbit.val_point(l_ms, xi, theta, phi) ;

}



//=============================================================================
//	Function used to locate the MB orbit
//=============================================================================

double funct_compobj_QI_rmb(double zeros, const Param& par){

    // Retrieval of the information:
    int l_mb = par.get_int() ;
    const Scalar& orbit = par.get_scalar() ;
    const Valeur& vorbit = orbit.get_spectral_va() ;

    // Value et the desired point
    double theta = M_PI / 2. ;
    double phi = 0 ;
    return vorbit.val_point(l_mb, zeros, theta, phi) ;

}




}