1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
/*
* Method of class Compobj_QI to compute the location of the ISCO
*
* (see file compobj.h for documentation).
*
*/
/*
* Copyright (c) 2012 Odele Straub, Claire Some, Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char compobj_QI_global_C[] = "$Header: /cvsroot/Lorene/C++/Source/Compobj/compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $" ;
/*
* $Id: compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $
* $Log: compobj_QI_global.C,v $
* Revision 1.11 2014/10/13 08:52:49 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.10 2014/10/06 15:13:04 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.9 2014/02/12 16:46:54 o_straub
* Rmb : cleaner prompt
*
* Revision 1.8 2014/01/14 20:52:53 e_gourgoulhon
* ISCO searched downwards
*
* Revision 1.7 2014/01/14 16:35:46 e_gourgoulhon
* Changed output printing in ISCO search
*
* Revision 1.6 2013/11/13 11:20:01 j_novak
* Minor correction to compile with older versions of g++
*
* Revision 1.5 2013/07/25 19:44:11 o_straub
* calculation of the marginally bound radius
*
* Revision 1.4 2013/04/04 15:32:32 e_gourgoulhon
* Better computation of the ISCO
*
* Revision 1.3 2012/11/22 16:04:51 c_some
* Minor modifications
*
* Revision 1.2 2012/11/21 14:53:45 c_some
* corrected mom_euler
*
* Revision 1.1 2012/11/16 16:14:11 c_some
* New class Compobj_QI
*
*
* $Header: /cvsroot/Lorene/C++/Source/Compobj/compobj_QI_global.C,v 1.11 2014/10/13 08:52:49 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "compobj.h"
#include "param.h"
#include "utilitaires.h"
namespace Lorene {
double funct_compobj_QI_isco(double, const Param&) ;
double funct_compobj_QI_rmb(double, const Param&) ;
//----------------------------//
// Angular momentum //
//----------------------------//
double Compobj_QI::angu_mom() const {
if (p_angu_mom == 0x0) { // a new computation is required
cerr << "Compobj_QI::angu_mom() : not implemented yet !" << endl ; //## provisory
abort() ;
}
return *p_angu_mom ;
}
//=============================================================================
// r_isco()
//=============================================================================
double Compobj_QI::r_isco(int lmin, ostream* ost) const {
if (p_r_isco == 0x0) { // a new computation is required
// First and second derivatives of metric functions
// ------------------------------------------------
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
Scalar dnphi = nphi.dsdr() ;
dnphi.annule_domain(nzm1) ;
Scalar ddnphi = dnphi.dsdr() ; // d^2/dr^2 N^phi
Scalar tmp = nn.dsdr() ;
tmp.annule_domain(nzm1) ;
Scalar ddnnn = tmp.dsdr() ; // d^2/dr^2 N
tmp = bbb.dsdr() ;
tmp.annule_domain(nzm1) ;
Scalar ddbbb = tmp.dsdr() ; // d^2/dr^2 B
// Constructing the velocity of a particle corotating with the star
// ----------------------------------------------------------------
Scalar bdlog = bbb.dsdr() / bbb ;
Scalar ndlog = nn.dsdr() / nn ;
Scalar bsn = bbb / nn ;
Scalar r(mp) ;
r = mp.r ;
Scalar r2= r*r ;
bdlog.annule_domain(nzm1) ;
ndlog.annule_domain(nzm1) ;
bsn.annule_domain(nzm1) ;
r2.annule_domain(nzm1) ;
// ucor_plus - the velocity of corotating particle on the circular orbit
Scalar ucor_plus = (r2 * bsn * dnphi +
sqrt ( r2 * r2 * bsn *bsn * dnphi * dnphi +
4 * r2 * bdlog * ndlog + 4 * r * ndlog) ) /
2 / (1 + r * bdlog ) ;
Scalar factor_u2 = r2 * (2 * ddbbb / bbb - 2 * bdlog * bdlog +
4 * bdlog * ndlog ) +
2 * r2 * r2 * bsn * bsn * dnphi * dnphi +
4 * r * ( ndlog - bdlog ) - 6 ;
Scalar factor_u1 = 2 * r * r2 * bsn * ( 2 * ( ndlog - bdlog ) *
dnphi - ddnphi ) ;
Scalar factor_u0 = - r2 * ( 2 * ddnnn / nn - 2 * ndlog * ndlog +
4 * bdlog * ndlog ) ;
// Scalar field the zero of which will give the marginally stable orbit
Scalar orbit = factor_u2 * ucor_plus * ucor_plus +
factor_u1 * ucor_plus + factor_u0 ;
orbit.std_spectral_base() ;
// Search for the zero
// -------------------
double r_ms, theta_ms, phi_ms, xi_ms,
xi_min = -1, xi_max = 1;
int l_ms = lmin, l ;
bool find_status = false ;
const Valeur& vorbit = orbit.get_spectral_va() ;
// Preliminary location of the zero
// of the orbit function with an error = 0.01
theta_ms = M_PI / 2. ; // pi/2
phi_ms = 0. ;
for(l = nzm1-1; l >= lmin; l--) {
xi_min = -1. ;
xi_max = 1. ;
double resloc_old ;
double xi_f = xi_min;
double resloc = vorbit.val_point(l, xi_min, theta_ms, phi_ms) ;
for (int iloc=0; iloc<200; iloc++) {
xi_f = xi_f + 0.01 ;
resloc_old = resloc ;
resloc = vorbit.val_point(l, xi_f, theta_ms, phi_ms) ;
if ( resloc * resloc_old < double(0) ) {
xi_min = xi_f - 0.01 ;
xi_max = xi_f ;
l_ms = l ;
find_status = true ;
break ;
}
}
if (find_status) break ;
}
Param par_ms ;
par_ms.add_int(l_ms) ;
par_ms.add_scalar(orbit) ;
if(find_status) {
double precis_ms = 1.e-12 ; // precision in the determination of xi_ms
int nitermax_ms = 100 ; // max number of iterations
int niter ;
xi_ms = zerosec(funct_compobj_QI_isco, par_ms, xi_min, xi_max,
precis_ms, nitermax_ms, niter) ;
if (ost != 0x0) {
*ost << "ISCO search: " << endl ;
*ost << " Domain number: " << l_ms << endl ;
*ost << " xi_min, xi_max : " << xi_min << " , " << xi_max << endl ;
*ost << " number of iterations used in zerosec: " << niter << endl ;
*ost << " zero found at xi = " << xi_ms << endl ;
}
r_ms = mp.val_r(l_ms, xi_ms, theta_ms, phi_ms) ;
} else {
// ISCO not found
r_ms = -1 ;
xi_ms = -1 ;
l_ms = lmin ;
}
p_r_isco = new double (r_ms) ;
// p_r_isco = new double (
// (bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) * r_ms
// ) ;
// Determination of the frequency at the marginally stable orbit
// -------------------------------------------------------------
ucor_plus.std_spectral_base() ;
double ucor_msplus = (ucor_plus.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms,
phi_ms) ;
double nobrs = (bsn.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
double nphirs = (nphi.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
p_f_isco = new double ( ( ucor_msplus / nobrs / r_ms + nphirs ) /
(double(2) * M_PI) ) ;
// Specific angular momentum on ms orbit
// -------------------------------------
p_lspec_isco=new double (ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
((bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms );
// Specific energy on ms orbit
// ---------------------------
p_espec_isco=new double (( 1./nobrs / r_ms / ucor_msplus + nphirs) *
(ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
((bbb.get_spectral_va()).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms ));
} // End of computation
return *p_r_isco ;
}
//=============================================================================
// f_isco()
//=============================================================================
double Compobj_QI::f_isco(int lmin) const {
if (p_f_isco == 0x0) { // a new computation is required
r_isco(lmin) ; // f_isco is computed in the method r_isco()
assert(p_f_isco != 0x0) ;
}
return *p_f_isco ;
}
//=============================================================================
// lspec_isco()
//=============================================================================
double Compobj_QI::lspec_isco(int lmin) const {
if (p_lspec_isco == 0x0) { // a new computation is required
r_isco(lmin) ; // lspec_isco is computed in the method r_isco()
assert(p_lspec_isco != 0x0) ;
}
return *p_lspec_isco ;
}
//=============================================================================
// espec_isco()
//=============================================================================
double Compobj_QI::espec_isco(int lmin) const {
if (p_espec_isco == 0x0) { // a new computation is required
r_isco(lmin) ; // espec_isco is computed in the method r_isco()
assert(p_espec_isco != 0x0) ;
}
return *p_espec_isco ;
}
//=============================================================================
// r_mb()
//=============================================================================
double Compobj_QI::r_mb(int lmin, ostream* ost) const {
if (p_r_mb == 0x0) { // a new computation is required
// Coefficients of the effective potential (A) and its derivative (B)
// ------------------------------------------------
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
Scalar r(mp) ;
r = mp.r ;
Scalar r2 = r*r ;
r2.annule_domain(nzm1) ;
Scalar ndn = nn*nn.dsdr() ;
ndn.annule_domain(nzm1) ;
// Scalar V_eff = A1 + A2 * E^2 + A3 * E * L + A4 * L^2 ;
// Scalar dV_eff = B1 + B2 * E^2 + B3 * E * L + B4 * L^2 ;
Scalar A1 =-bbb*bbb * nn*nn * r2 ;
Scalar A2 = bbb*bbb * r2 ;
Scalar A3 =-2. * bbb*bbb * r2 * nphi ;
Scalar A4 =-nn*nn + bbb*bbb * r2 * nphi*nphi ;
Scalar B1 =-2.*r * bbb*bbb * nn*nn - 2.*r2 * bbb*bbb.dsdr() * nn*nn - 2.*r2 * bbb*bbb * nn*nn.dsdr() ;
Scalar B2 = 2.*r * bbb*bbb + 2.*r2 * bbb*bbb.dsdr() ;
Scalar B3 =-2.*nphi*B2 - 2.*r2 * bbb*bbb * nphi.dsdr() ;
Scalar B4 = 2.*r * bbb*bbb * nphi*nphi + 2.*r2 * bbb*bbb.dsdr() * nphi*nphi - 2.*ndn + 2.*r2 * bbb*bbb * nphi*nphi.dsdr() ;
Scalar C1 = (A1 * B3 - A3 * B1) ;
Scalar C2 = (A2 * B3 - A3 * B2) ;
Scalar C3 = (A4 * B3 - A3 * B4) ;
Scalar D1 = B4 * C1 - B1 * C3 ;
Scalar D2 = B4 * C2 - B2 * C3 ;
Scalar D3 = B3 * B3 * C1 * C3 ;
Scalar D4 = B3 * B3 * C2 * C3 ;
// Constructing the orbital energy of a particle corotating with the star
// ----------------------------------------------------------------
/* B3 * V_eff - A3 * dV_eff = 0. ; // solve eq. for L
Scalar L = sqrt((C1 + C2 * E2) / C3) ; // substitute into the eq. dVeff=0, then solve for E
Scalar EE = (-(2.*D1*D2 + D3) + sqrt((2.*D1*D2 + D3) * (2.*D1*D2 + D3) - 4.*D1*D1 * (D2*D2 +
D4))) / (2.*(D2*D2 + D4)) ; // solve eq. EE = 1 for r
*/
Scalar bound_orbit = -(2.*D1*D2 + D3) - sqrt((2.*D1*D2 + D3) * (2.*D1*D2 + D3) - 4.*D1*D1 *
(D2*D2 + D4)) - 2.*(D2*D2 + D4) ;
// cout << "bound_orbit :" << bound_orbit << endl ;
bound_orbit.std_spectral_base() ;
// Search for the zero
// -------------------
const int noz(10) ; // number of zeros
double zeros[2][noz] ; // define array for zeros
int i = 0 ; // counter
int l ; // number of domain
double rmb, theta_mb, phi_mb, xi_mb;
double xi_min = -1, xi_max = 1 ;
const Valeur& vorbit = bound_orbit.get_spectral_va() ;
// Preliminary location of the zero
// of the bound_orbit function with an error = dx
double dx = 0.001 ;
theta_mb = M_PI / 2. ;
phi_mb = 0. ;
for(l = lmin; l <= nzm1; l++) {
xi_min = -1. ;
double resloc_old ;
double xi_f = xi_min;
double resloc = vorbit.val_point(l, xi_f, theta_mb, phi_mb) ;
while(xi_f <= xi_max) {
xi_f = xi_f + dx ;
resloc_old = resloc ;
resloc = vorbit.val_point(l, xi_f, theta_mb, phi_mb) ;
if ( resloc * resloc_old < double(0) ) {
zeros[0][i] = xi_f ; // xi_max
zeros[1][i] = l ; // domain number l
i++ ;
}
}
}
int number_of_zeros = i ;
cout << "number of zeros: " << number_of_zeros << endl ;
double precis_mb = 1.e-9 ; // precision in the determination of xi_mb: 1.e-12
int nitermax_mb = 100 ; // max number of iterations
for(int i = 0; i < number_of_zeros; i++) {
//cout << i << " " << zeros[0][i] << " " << zeros[1][i] << endl ;
int l_mb = int(zeros[1][i]) ;
xi_max = zeros[0][i] ;
xi_min = xi_max - dx ;
Param par_mb ;
par_mb.add_scalar(bound_orbit) ;
par_mb.add_int(l_mb) ;
int niter ;
xi_mb = zerosec(funct_compobj_QI_rmb, par_mb, xi_min, xi_max, precis_mb, nitermax_mb, niter) ;
if (ost != 0x0) {
*ost << "RMB search: " << endl ;
*ost << " Domain number: " << l_mb << endl ;
*ost << " xi_min, xi_max : " << xi_min << " , " << xi_max << endl ;
*ost << " number of iterations used in zerosec: " << niter << endl ;
*ost << " zero found at xi = " << xi_mb << endl ;
}
if (niter < nitermax_mb) {
double zero_mb = mp.val_r(l_mb, xi_mb, theta_mb, phi_mb) ;
//double r_hor = radius_hor(0); // set to 1 in the condition below
double r_ms = r_isco(0) ;
if (zero_mb < (1 + r_ms)/2){
rmb = zero_mb ;
}
}
}
p_r_mb = new double (rmb) ;
//delete [] zeros ; not used, causes "core dump" in Code kerr_qi
} // End of computation
return *p_r_mb ;
}
//=============================================================================
// Function used to locate the MS orbit
//=============================================================================
double funct_compobj_QI_isco(double xi, const Param& par){
// Retrieval of the information:
int l_ms = par.get_int() ;
const Scalar& orbit = par.get_scalar() ;
const Valeur& vorbit = orbit.get_spectral_va() ;
// Value et the desired point
double theta = M_PI / 2. ;
double phi = 0 ;
return vorbit.val_point(l_ms, xi, theta, phi) ;
}
//=============================================================================
// Function used to locate the MB orbit
//=============================================================================
double funct_compobj_QI_rmb(double zeros, const Param& par){
// Retrieval of the information:
int l_mb = par.get_int() ;
const Scalar& orbit = par.get_scalar() ;
const Valeur& vorbit = orbit.get_spectral_va() ;
// Value et the desired point
double theta = M_PI / 2. ;
double phi = 0 ;
return vorbit.val_point(l_mb, zeros, theta, phi) ;
}
}
|