File: scalarBH.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (548 lines) | stat: -rw-r--r-- 15,464 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 *  Methods of the class ScalarBH
 *
 *    (see file compobj.h for documentation).
 *
 */

/*
 *   Copyright (c) 2015 Frederic Vincent, Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char scalarBH_C[] = "$Header: /cvsroot/Lorene/C++/Source/Compobj/scalarBH.C,v 1.6 2016/05/10 12:52:32 f_vincent Exp $" ;

/*
 * $Id: scalarBH.C,v 1.6 2016/05/10 12:52:32 f_vincent Exp $
 * $Log: scalarBH.C,v $
 * Revision 1.6  2016/05/10 12:52:32  f_vincent
 * scalarBH: adding a flag to treat both boson stars and scalar BH
 *
 * Revision 1.5  2015/12/15 06:45:47  f_vincent
 * Few modifs to scalarBH.C to handle spacetime with horizon
 *
 * Revision 1.4  2015/11/09 16:00:57  f_vincent
 * Updated ScalarBH class
 *
 * Revision 1.3  2015/11/05 17:30:46  f_vincent
 * Updated class scalarBH.
 *
 * Revision 1.2  2015/10/27 10:53:23  f_vincent
 * Updated class scalarBH
 *
 * Revision 1.1  2015/10/22 09:18:36  f_vincent
 * New class ScalarBH
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Compobj/scalarBH.C,v 1.6 2016/05/10 12:52:32 f_vincent Exp $
 *
 */


// C headers
#include <cassert>

// Lorene headers
#include "compobj.h"
#include "unites.h"
#include "nbr_spx.h"

//--------------//
// Constructors //
//--------------//

// Standard constructor
// --------------------
namespace Lorene {
  ScalarBH::ScalarBH(Map& mpi, const char* file_name) :
    Compobj(mpi),
    ff0(mpi),
    ff1(mpi),
    ff2(mpi),
    ww(mpi),
    sfield(mpi),
    rHor(0.)
  {
    
    ifstream file(file_name) ; 
    if ( !file.good() ) {
      cerr << "Problem in opening the file " << file_name << endl ;
      abort() ;
    }
  
    const Mg3d* mg = mp.get_mg() ; 
    double rH2 ;
    int nrfile, nthetafile;
    file >> nrfile >> nthetafile ;
    file >> rHor ;
    rH2 = rHor*rHor ;

    if (rHor<0. || nrfile<0. || nthetafile<0.){
      cerr << "In scalarBH::scalarBH(Map,char*): "
	   << "Bad parameters rHor, nrfile, nthetafile" << endl;
      abort();
    }

    int isphi;
    file >> isphi ;

    cout << "nr, ntheta from file = " << nrfile << " " << nthetafile << endl;
    cout << "rHor from file = " << rHor << endl;
    if (isphi==1) {
      cout << "Scalar field values provided" << endl;
    }else if (isphi==0){
      cout << "Scalar field values not provided, put to zero" << endl;
    }else{
      cerr << "In scalarBH::scalarBH(Map,char*): "
	   << "Bad parameter isphi" << endl;
      abort();
    }

    double* Xfile = new double[nrfile * nthetafile] ;
    double* thetafile = new double[nrfile * nthetafile] ;
    double* f0file = new double[nrfile * nthetafile] ;
    double* f1file = new double[nrfile * nthetafile] ;
    double* f2file = new double[nrfile * nthetafile] ;
    double* wwfile = new double[nrfile * nthetafile] ;
    double* sfieldfile = new double[nrfile * nthetafile] ;

    cout << "Reading metric data... ";
    for (int ii=0;ii<nrfile*nthetafile;ii++){
      // there are empty lines in Carlos file, but it doesn't seem to be a pb
      file >> Xfile[ii] ; 
      file >> thetafile[ii] ;
      file >> f1file[ii] ;
      file >> f2file[ii] ;
      file >> f0file[ii] ;
      if (isphi==1) {
	file >> sfieldfile[ii] ;
      }else{
	sfieldfile[ii] = 0.;
      }
      file >> wwfile[ii] ;
      //cout << ii << " " << Xfile[ii] << " " << thetafile[ii] << " " << f0file[ii] << " " << f1file[ii] << " " << f2file[ii] << " " << wwfile[ii] << " " << sfieldfile[ii] << endl;
    }  
    cout << "done" << endl;
    file.close() ; 

    double Xbefmax = Xfile[nrfile-2];

    int nz = mg->get_nzone() ; 
    //cout << "nz : " << nz << endl ; 
    ff0.allocate_all() ; // Memory allocation for F_0
    ff1.allocate_all() ; // Memory allocation for F_1
    ff2.allocate_all() ; // Memory allocation for F_2
    ww.allocate_all() ; // Memory allocation for W
    sfield.allocate_all() ; // Memory allocation for scalar field phi

    double delta_theta = 0.1*fabs(thetafile[nrfile] - thetafile[0]); // small wrt the theta step in Carlos grid

    cout << "Starting interpolating Lorene grid... " ;
    Mtbl rr(mp.r); 
    Mtbl theta(mp.tet); 
    int l_min; // this should be 0 for a spacetime without horizon, 1 with
    if (rHor>0.){
      l_min = 1; 
    }else{
      l_min = 0; 
    }
    for (int l=l_min; l<nz; l++) {
      int nr = mg->get_nr(l) ; 
      int nt = mg->get_nt(l) ; 
      int np = mg->get_np(l) ;
      //cout << "Starting loop k j i" << endl;
      for (int k=0; k<np; k++){
	for (int j=0; j<nt; j++){
	  double th0 = theta(l, k, j, 0);
	  for (int i=0; i<nr; i++){
	    double r0 = rr(l, k, j, i);
	    double x0, xx0;
	    if (r0 < __infinity){
	      x0 = sqrt(r0*r0 - rH2);
	      xx0 = x0 / (x0+1);
	    }else{
	      xx0 = 1.;
	    }
	    
	    //cout << "Loene radial stuff= " << r0 << " " << x0 << " " << xx0 << endl;
	    //cout << "Lorene points= " << xx0 << " " << th0 << endl;
	      
	    int ith=0;
	    int ithbis=0;
	    double thc = thetafile[ith];
	    while (fabs(th0 - thc) > delta_theta){
	      ith += nrfile;
	      ithbis++;
	      thc = thetafile[ith];
	    }
	    int ir=ith;
	    double xc = Xfile[ir];
	    if (xc > 0.){
	      cerr << "In scalarBH::ScalarBH(): "
		"r should be zero here" << endl;
	      abort();
	    }
	    int doradinterp=1;
	    if (xx0 == 0.){
	      doradinterp=0;
	    }else if(xx0 == 1.){
	      ir += nrfile-1;
	      xc = Xfile[ir];
	      doradinterp=0;
	    }else if(xx0 > Xbefmax && xx0< 1.){
	      ir+=nrfile-2;
	      xc = Xfile[ir];
	    }else{
	      //cout << "Indice= " << ithbis << " " << ir << " " << xc << endl;

	      while (xx0 > xc){
		ir ++;
		xc = Xfile[ir];
		//cout << "xc, xx0 in loop= " << xc << " " << xx0 << endl;
	      }	      
	    }

	    double f0interp, f1interp, f2interp, winterp, sfieldinterp;
	    if (doradinterp){
	      double xcinf = Xfile[ir-1], xcsup = Xfile[ir+1];
	      int irext1, irext2;
	      if (ir-3>0) {irext1=ir-2; irext2=ir-3;}
	      else if (ir+3<nrfile) {irext1=ir+2; irext2=ir+3;}
	      else{
		cerr << "scalarBH::scalarBH(): bad radial indice" << endl;
		abort();
	      }
	      double xcext1 = Xfile[irext1], xcext2 = Xfile[irext2];
	      
	      // At this stage we have either xcext2<xcext1<xcinf<xx0<xc<xcsup
	      // or xcinf<xx0<xc<xcsup<xcext1<xcext2

	      //cout << "index, X= " << irext1 << " " << xcext1 <<" " << irext2 << " " << xcext2 << endl;
	      //cout << "X stuff= " << xcext2 << " " << xcext1 << " " << xcinf << " " << xx0 << " " << xc << " " << xcsup << endl;

	      if (fabs(thc-th0)>delta_theta){
		cerr << "scalarBH::ScalarBH(): theta problem in grid" << endl;
		cerr << "Theta info: " << thc << " " << th0 << endl;
		abort();
	      }
	      if (xx0 <= Xbefmax &&
		  (xx0 < xcinf || xx0 > xc || xx0 > xcsup)){
		cerr << "scalarBH::ScalarBH(): rad problem in grid" << endl;
		cerr << "Radial info: " << xcinf << " " << xx0 << " " 
		     << xc << " " << xcsup << endl;
		abort();
	      }else if (xx0 > Xbefmax &&
			(xx0 < xcinf || xx0 < xc || xx0 > xcsup)){
		cerr << "scalarBH::ScalarBH(): special rad "
		  "problem in grid" << endl;
		cerr << "Radial info: " << xcinf << " " << xx0 << " " 
		     << xc << " " << xcsup << endl;
		abort();
	      }
	      //Radial polynomials
	      double polyrinf = (xx0-xc)*(xx0-xcsup)*(xx0-xcext1)*(xx0-xcext2)/((xcinf-xc)*(xcinf-xcsup)*(xcinf-xcext1)*(xcinf-xcext2));
	      double polyrmid = (xx0-xcinf)*(xx0-xcsup)*(xx0-xcext1)*(xx0-xcext2)/((xc-xcinf)*(xc-xcsup)*(xc-xcext1)*(xc-xcext2));
	      double polyrsup = (xx0-xcinf)*(xx0-xc)*(xx0-xcext1)*(xx0-xcext2)/((xcsup-xcinf)*(xcsup-xc)*(xcsup-xcext1)*(xcsup-xcext2));
	      double polyrext1 = (xx0-xcinf)*(xx0-xc)*(xx0-xcsup)*(xx0-xcext2)/((xcext1-xcinf)*(xcext1-xc)*(xcext1-xcsup)*(xcext1-xcext2));
	      double polyrext2 = (xx0-xcinf)*(xx0-xc)*(xx0-xcsup)*(xx0-xcext1)/((xcext2-xcinf)*(xcext2-xc)*(xcext2-xcsup)*(xcext2-xcext1));

	      // Grid values of all Scalars
	      double f0ext1 = f0file[irext1], f0ext2 = f0file[irext2], 
		f0inf = f0file[ir-1], 
		f0mid = f0file[ir], 
		f0sup = f0file[ir+1], f1ext1=f1file[irext1],
		f1ext2=f1file[irext2],
		f1inf = f1file[ir-1], f1mid = f1file[ir], 
		f1sup = f1file[ir+1], f2ext1=f2file[irext1],
		f2ext2=f2file[irext2],
		f2inf = f2file[ir-1], f2mid = f2file[ir], 
		f2sup = f2file[ir+1], wext1=wwfile[irext1],
		wext2=wwfile[irext2],
		winf = wwfile[ir-1], wmid = wwfile[ir], 
		wsup = wwfile[ir+1], sfext1=sfieldfile[irext1],
		sfext2=sfieldfile[irext2],
		sfinf = sfieldfile[ir-1], 
		sfmid = sfieldfile[ir], sfsup = sfieldfile[ir+1];

	      /*cout << "Interpolating" << endl;
	      cout << "Carlos points= " << xcinf << " " << xx0 << " " <<  xc << " " << xcsup << endl;
	      cout << "f0= " << f0inf << " " << f0mid << " " << f0sup << endl;*/
	      
	      // Interpolate Scalars
	      f0interp = f0ext1*polyrext1 + f0ext2*polyrext2 + f0inf*polyrinf 
		+ f0mid*polyrmid + f0sup*polyrsup;
	      f1interp = f1ext1*polyrext1 + f1ext2*polyrext2 + f1inf*polyrinf 
		+ f1mid*polyrmid + f1sup*polyrsup;
	      f2interp = f2ext1*polyrext1 + f2ext2*polyrext2 + f2inf*polyrinf 
		+ f2mid*polyrmid + f2sup*polyrsup;
	      winterp = wext1*polyrext1 +  wext2*polyrext2 + winf*polyrinf 
		+ wmid*polyrmid + wsup*polyrsup;
	      sfieldinterp = sfext1*polyrext1 + sfext2*polyrext2 
		+ sfinf*polyrinf 
		+ sfmid*polyrmid + sfsup*polyrsup;
	    }else{
	      
	      /*cout << "Not interpolating" << endl;
	      cout << "Carlos point= " << xc << endl;
	      cout << "W= " << wwfile[ir] << endl;*/
	      // No interpolation at grid ends
	      f0interp = f0file[ir] ;
	      f1interp = f1file[ir] ;
	      f2interp = f2file[ir] ;
	      winterp = wwfile[ir] ;
	      sfieldinterp = sfieldfile[ir] ;
	    }

	    ff0.set_grid_point(l,k,j,i) = f0interp ;
	    ff1.set_grid_point(l,k,j,i) = f1interp ;
	    ff2.set_grid_point(l,k,j,i) = f2interp ;
	    ww.set_grid_point(l,k,j,i) = winterp ;
	    sfield.set_grid_point(l,k,j,i) = sfieldinterp ;
	  }
	} 
      }
    }

    // Deleting arrays useless now
    delete[] Xfile;
    delete[] thetafile;
    delete[] f0file;
    delete[] f1file;
    delete[] f2file;
    delete[] wwfile;
    delete[] sfieldfile;

    ff0.std_spectral_base() ;
    ff1.std_spectral_base() ;
    ff2.std_spectral_base() ;
    ww.std_spectral_base() ;
    sfield.std_spectral_base() ; // to be modified: parity of |Phi|


    cout << "done." << endl;

    // At this point the Scalar ff0, ff1, ff2, ww, sfield
    // are initialized on the Lorene grid to proper interpolated values

    cout << "Starting updating metric... " ;
    update_metric();
    cout << "done." << endl;
   
    // Pointers of derived quantities initialized to zero : 
    set_der_0x0() ;
  }

  // Copy constructor
  // --------------------
  ScalarBH::ScalarBH(const ScalarBH& other) :
    Compobj(other),
    ff0(other.ff0),
    ff1(other.ff0),
    ff2(other.ff0),
    ww(other.ff0),
    sfield(other.ff0),
    rHor(other.rHor)
  {
    // Pointers of derived quantities initialized to zero : 
    set_der_0x0() ;
  }


  // Constructor from a file
  // -----------------------
  ScalarBH::ScalarBH(Map& mpi, FILE* ) :
    Compobj(mpi),
    ff0(mpi),
    ff1(mpi),
    ff2(mpi),
    ww(mpi),
    sfield(mpi),
    rHor(0.)
  {
    // Pointers of derived quantities initialized to zero : 
    set_der_0x0() ;
    
    // Read of the saved fields:
    // ------------------------

  }

  //------------//
  // Destructor //
  //------------//

  ScalarBH::~ScalarBH(){

    del_deriv() ; 

  }


  //----------------------------------//
  // Management of derived quantities //
  //----------------------------------//

  void ScalarBH::del_deriv() const {

    Compobj::del_deriv() ; 


    ScalarBH::set_der_0x0() ; 
  }			    


  void ScalarBH::set_der_0x0() const {
 	 
  }			    

  //--------------//
  //  Assignment  //
  //--------------//

  // Assignment to another ScalarBH
  // --------------------------------
  void ScalarBH::operator=(const ScalarBH& other) {

    // Assignment of quantities common to all the derived classes of Compobj
    Compobj::operator=(other) ;	    
    
    del_deriv() ;  // Deletes all derived quantities
  }	

  //--------------//
  //	  Outputs   //
  //--------------//

  // Save in a file
  // --------------
  void ScalarBH::sauve(FILE* ) const {

    
  }

  // Printing
  // --------

  ostream& ScalarBH::operator>>(ostream& ost) const {

    using namespace Unites ;
	
    Compobj::operator>>(ost) ; 
    
    ost << endl << "Black hole with scalar hair (class ScalarBH) " << endl ; 
    //    ost << description1 << endl ; 
    //    ost << description2 << endl ; 
   
    return ost ; 
      
  }

  //-------------------------//
  //	Computational methods  //
  //-------------------------//
			    
  // Updates the extrinsic curvature
  // -------------------------------

  //void ScalarBH::extrinsic_curvature() {

    // FV: commenting out October 2015 to compile

    // // Special treatment for axisymmetric case:
    
    // if ( (mp.get_mg())->get_np(0) == 1) {
    
    //   // What follows is valid only for a mapping of class Map_radial :   
    //   assert( dynamic_cast<const Map_radial*>(&mp) != 0x0 ) ;
        
    //   Scalar tmp = krphi ; 
    //   tmp.mult_sint() ;  // multiplication by sin(theta)
    //   kk.set(1,3) = tmp ; 
        
    //   kk.set(2,3) = 0 ; 

    //   kk.set(1,1) = 0 ; 
    //   kk.set(1,2) = 0 ; 
    //   kk.set(2,2) = 0 ; 
    //   kk.set(3,3) = 0 ; 
    // }
    // else {

    //   // General case:

    //   Compobj::extrinsic_curvature() ; 
    // }
    
    // // Computation of A^2 K_{ij} K^{ij}
    // // --------------------------------
        
    // ak_car = 2 * ( kk(1,3)*kk(1,3) +  kk(2,3)*kk(2,3) ) / b_car ;
    
    // del_deriv() ; 

  //}


void ScalarBH::update_metric() {
  Mtbl rr(mp.r); 
  Scalar NN(mp);
  NN = 1 - rHor/rr;
  if (rHor>0.){
    NN.set_domain(0) = 1;
  }

  nn = exp(ff0)*sqrt(NN);
  nn.std_spectral_base() ;

  Sym_tensor gam(mp, COV, mp.get_bvect_spher()) ; 
  // Component in an orthonormal basis, thus, no r^2, r^2sin2theta terms
  gam.set(1,1) = exp(2*ff1)/NN ;
  gam.set(1,1).std_spectral_base() ;
  gam.set(1,2) = 0 ; 
  gam.set(1,3) = 0 ; 
  gam.set(2,2) = exp(2*ff1); //gam(1,1) ; 
  gam.set(2,2).std_spectral_base() ;
  gam.set(2,3) = 0 ; 
  gam.set(3,3) = exp(2*ff2) ;
  gam.set(3,3).std_spectral_base() ;
  
  gamma = gam ;

  assert(*(beta.get_triad()) == mp.get_bvect_spher()) ; 
  
  beta.set(1) = 0 ;
  beta.set(2) = 0 ;
  Scalar nphi_ortho(ww) ; 
  nphi_ortho.mult_rsint() ;
  beta.set(3) = - nphi_ortho ; 
	
  // Tensor B^{-2} K_{ij} and Scalar A^2 K_{ij} K^{ij}
  // -------------------------------------------------
  
  extrinsic_curvature() ; 
  
  
  // The derived quantities are no longer up to date : 
  // -----------------------------------------------
  
  del_deriv() ;  
	
}


} // End nammespace Lorene