1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
/*
* Methods of class Connection.
*
* (see file connection.h for documentation)
*
*/
/*
* Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char connection_C[] = "$Header: /cvsroot/Lorene/C++/Source/Connection/connection.C,v 1.19 2014/10/13 08:52:49 j_novak Exp $" ;
/*
* $Id: connection.C,v 1.19 2014/10/13 08:52:49 j_novak Exp $
* $Log: connection.C,v $
* Revision 1.19 2014/10/13 08:52:49 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.18 2014/10/06 15:13:04 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.17 2004/02/18 18:44:22 e_gourgoulhon
* Method Tensor::scontract renammed Tensor::trace.
*
* Revision 1.16 2004/01/29 15:21:51 e_gourgoulhon
* First implementation of method p_divergence.
*
* Revision 1.15 2004/01/23 07:58:38 e_gourgoulhon
* Method p_derive_cov: treatment of dzpuis: entry with dzpuis = 2 is now
* allowed (output: dzpuis=3).
*
* Revision 1.14 2004/01/22 16:15:53 e_gourgoulhon
* First operational version of ricci().
*
* Revision 1.13 2004/01/19 16:57:44 e_gourgoulhon
* First implementation of method ricci().
* Not tested yet.
*
* Revision 1.12 2004/01/13 21:33:33 e_gourgoulhon
* Corrected a bug in method p_derive_cov: inverted case CON and case COV.
*
* Revision 1.11 2004/01/04 20:57:51 e_gourgoulhon
* -- Data member delta is now of type Tensor_sym (and no longer
* Tensor_delta).
* -- Better handling of tensor symmetries in method p_derive_cov().
*
* Revision 1.10 2004/01/01 11:24:04 e_gourgoulhon
* Full reorganization of method p_derive_cov: the main loop is now
* on the indices of the *output* tensor (to take into account
* symmetries in the input and output tensors).
*
* Revision 1.9 2003/12/30 22:58:27 e_gourgoulhon
* -- Replaced member flat_conn (flat connection) by flat_met (flat metric)
* -- Added argument flat_met to the constructors of Connection.
* -- Suppressed method fait_ricci() (the computation of the Ricci is
* now devoted to the virtual method ricci()).
* -- Implementation of methods fait_delta() and derive_cov().
*
* Revision 1.8 2003/12/27 14:59:05 e_gourgoulhon
* Method derive_cov() suppressed.
*
* Revision 1.7 2003/10/16 14:21:36 j_novak
* The calculation of the divergence of a Tensor is now possible.
*
* Revision 1.6 2003/10/11 14:39:49 e_gourgoulhon
* Suppressed declaration of unusued arguments in some methods.
*
* Revision 1.5 2003/10/06 13:58:46 j_novak
* The memory management has been improved.
* Implementation of the covariant derivative with respect to the exact Tensor
* type.
*
* Revision 1.4 2003/10/03 14:16:04 e_gourgoulhon
* Added set_der_0x0 in some constructors.
*
* Revision 1.3 2003/10/02 21:32:06 e_gourgoulhon
* Added constructor from Metric.
* Added functions fait_delta and update.
*
* Revision 1.2 2003/10/01 15:42:49 e_gourgoulhon
* still ongoing...
*
* Revision 1.1 2003/09/29 21:13:08 e_gourgoulhon
* First version --- not ready yet.
*
*
*
*
* $Header: /cvsroot/Lorene/C++/Source/Connection/connection.C,v 1.19 2014/10/13 08:52:49 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include <cstdlib>
// Lorene headers
#include "connection.h"
#include "metric.h"
//-----------------------//
// Constructors //
//-----------------------//
// Constructor ab initio
namespace Lorene {
Connection::Connection(const Tensor_sym& delta_i,
const Metric_flat& flat_met_i)
: mp(&(delta_i.get_mp())),
triad(delta_i.get_triad()),
delta(delta_i),
assoc_metric(false),
flat_met(&flat_met_i) {
assert( delta_i.get_valence() == 3 ) ;
assert( delta_i.sym_index1() == 1 ) ;
assert( delta_i.sym_index2() == 2 ) ;
assert( delta_i.get_index_type(0) == CON ) ;
assert( delta_i.get_index_type(1) == COV ) ;
assert( delta_i.get_index_type(2) == COV ) ;
set_der_0x0() ;
}
// Standard constructor from a metric.
Connection::Connection(const Metric& met,
const Metric_flat& flat_met_i)
: mp(&(met.get_mp())),
triad(met.cov().get_triad()),
delta(*mp, CON, COV, COV, *triad, 1, 2),
assoc_metric(true),
flat_met(&flat_met_i) {
fait_delta(met) ; // Computes delta
set_der_0x0() ;
}
// Copy constructor
Connection::Connection(const Connection& conn_i) : mp(conn_i.mp),
triad(conn_i.triad),
delta(conn_i.delta),
assoc_metric(conn_i.assoc_metric),
flat_met(conn_i.flat_met) {
set_der_0x0() ;
}
// Constructor for derived classes
Connection::Connection(const Map& mpi, const Base_vect& bi) : mp(&mpi),
triad(&bi),
delta(mpi, CON, COV, COV, bi, 1, 2),
assoc_metric(false),
flat_met(0x0){
set_der_0x0() ;
}
//-----------------------//
// Destructor //
//-----------------------//
Connection::~Connection(){
del_deriv() ;
}
//-----------------------------//
// Memory management //
//-----------------------------//
void Connection::del_deriv() const {
if (p_ricci != 0x0) delete p_ricci ;
set_der_0x0() ;
}
void Connection::set_der_0x0() const {
p_ricci = 0x0 ;
}
//-----------------------------//
// Mutators / assignment //
//-----------------------------//
void Connection::operator=(const Connection& ci) {
assert( triad == ci.triad ) ;
delta = ci.delta ;
flat_met = ci.flat_met ;
del_deriv() ;
}
void Connection::update(const Tensor_sym& delta_i) {
assert(assoc_metric == false) ;
assert(flat_met != 0x0) ; // to guarantee we are not in a derived class
assert( delta_i.get_valence() == 3 ) ;
assert( delta_i.sym_index1() == 1 ) ;
assert( delta_i.sym_index2() == 2 ) ;
assert( delta_i.get_index_type(0) == CON ) ;
assert( delta_i.get_index_type(1) == COV ) ;
assert( delta_i.get_index_type(2) == COV ) ;
delta = delta_i ;
del_deriv() ;
}
void Connection::update(const Metric& met) {
assert(assoc_metric == true) ;
assert(flat_met != 0x0) ; // to guarantee we are not in a derived class
fait_delta(met) ;
del_deriv() ;
}
//-----------------------------//
// Computational methods //
//-----------------------------//
//--------------------------------------
// Computation of the Delta coefficients
//--------------------------------------
void Connection::fait_delta(const Metric& gam) {
assert(flat_met != 0x0) ;
const Tensor& dgam = gam.cov().derive_cov(*flat_met) ;
for (int k=1; k<=3; k++) {
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
Scalar& cc = delta.set(k,i,j) ;
cc = 0 ;
for (int l=1; l<=3; l++) {
cc += gam.con()(k,l) * (
dgam(l,j,i) + dgam(i,l,j) - dgam(i,j,l) ) ;
}
cc = 0.5 * cc ;
}
}
}
}
//---------------------
// Covariant derivative
//---------------------
Tensor* Connection::p_derive_cov(const Tensor& uu) const {
// Notations: suffix 0 in name <=> input tensor
// suffix 1 in name <=> output tensor
int valence0 = uu.get_valence() ;
int valence1 = valence0 + 1 ;
int valence1m1 = valence1 - 1 ; // same as valence0, but introduced for
// the sake of clarity
int ncomp0 = uu.get_n_comp() ;
// Protections
// -----------
if (valence0 >= 1) {
assert(uu.get_triad() == triad) ;
}
assert(flat_met != 0x0) ;
// Creation of the result (pointer)
// --------------------------------
Tensor* resu ;
// If uu is a Scalar, the result is a Vector
if (valence0 == 0)
resu = new Vector(*mp, COV, triad) ;
else {
// Type of indices of the result :
Itbl tipe(valence1) ;
const Itbl& tipeuu = uu.get_index_type() ;
for (int id = 0; id<valence0; id++) {
tipe.set(id) = tipeuu(id) ; // First indices = same as uu
}
tipe.set(valence1m1) = COV ; // last index is the derivation index
// if uu is a Tensor_sym, the result is also a Tensor_sym:
const Tensor* puu = &uu ;
const Tensor_sym* puus = dynamic_cast<const Tensor_sym*>(puu) ;
if ( puus != 0x0 ) { // the input tensor is symmetric
resu = new Tensor_sym(*mp, valence1, tipe, *triad,
puus->sym_index1(), puus->sym_index2()) ;
}
else {
resu = new Tensor(*mp, valence1, tipe, *triad) ; // no symmetry
}
}
int ncomp1 = resu->get_n_comp() ;
Itbl ind1(valence1) ; // working Itbl to store the indices of resu
Itbl ind0(valence0) ; // working Itbl to store the indices of uu
Itbl ind(valence0) ; // working Itbl to store the indices of uu
Scalar tmp(*mp) ; // working scalar
// Determination of the dzpuis parameter of the input --> dz_in
// ---------------------------------------------------
int dz_in = 0 ;
for (int ic=0; ic<ncomp0; ic++) {
int dzp = uu(uu.indices(ic)).get_dzpuis() ;
assert(dzp >= 0) ;
if (dzp > dz_in) dz_in = dzp ;
}
#ifndef NDEBUG
// Check : do all components have the same dzpuis ?
for (int ic=0; ic<ncomp0; ic++) {
if ( !(uu(uu.indices(ic)).check_dzpuis(dz_in)) ) {
cout << "######## WARNING #######\n" ;
cout << " Connection::p_derive_cov : the tensor components \n"
<< " do not have all the same dzpuis ! : \n"
<< " ic, dzpuis(ic), dz_in : " << ic << " "
<< uu(uu.indices(ic)).get_dzpuis() << " " << dz_in << endl ;
}
}
#endif
// Initialisation to the flat derivative
// -------------------------------------
*resu = uu.derive_cov(*flat_met) ;
// Addition of the Delta terms
// ----------------------------
// loop on all the components of the output tensor
for (int ic=0; ic<ncomp1; ic++) {
// indices corresponding to the component no. ic in the output tensor
ind1 = resu->indices(ic) ;
// Indices of the input tensor
for (int id = 0; id < valence0; id++) {
ind0.set(id) = ind1(id) ;
}
// Value of last index (derivation index)
int k = ind1(valence1m1) ;
tmp = 0 ;
// Loop on the number of indices of uu
for (int id=0; id<valence0; id++) {
ind = ind0 ;
switch( uu.get_index_type(id) ) {
case CON : {
for (int l=1; l<=3; l++) {
ind.set(id) = l ;
tmp += delta(ind0(id), k, l) * uu(ind) ;
}
break ;
}
case COV : {
for (int l=1; l<=3; l++) {
ind.set(id) = l ;
tmp -= delta(l, k, ind0(id)) * uu(ind) ;
}
break ;
}
default : {
cerr <<
"Connection::p_derive_cov : unexpected type of index !\n" ;
abort() ;
break ;
}
} // end of switch on index type
} // end of loop on the number of indices of uu
if (dz_in > 0) tmp.dec_dzpuis() ; // to get the same dzpuis as
// the flat covariant derivative
resu->set(ind1) += tmp ; // addition to the flat derivative part
} // end of loop on all the components of the output tensor
// C'est fini !
// ------------
return resu ;
}
//---------------------------------
// Divergence, returning a pointer.
//---------------------------------
Tensor* Connection::p_divergence(const Tensor& uu) const {
// Notations: suffix 0 in name <=> input tensor
// suffix 1 in name <=> output tensor
int valence0 = uu.get_valence() ;
int valence1 = valence0 - 1 ;
int valence0m1 = valence0 - 1 ; // same as valence1 but introduced for
// the sake of clarity
int ncomp0 = uu.get_n_comp() ;
// Protections
// -----------
assert (valence0 >= 1) ;
assert (uu.get_triad() == triad) ;
// Last index must be contravariant:
assert (uu.get_index_type(valence0m1) == CON) ;
// Creation of the pointer on the result tensor
// --------------------------------------------
Tensor* resu ;
if (valence0 == 1) // if u is a Vector, the result is a Scalar
resu = new Scalar(*mp) ;
else {
// Type of indices of the result :
Itbl tipe(valence1) ;
const Itbl& tipeuu = uu.get_index_type() ;
for (int id = 0; id<valence1; id++) {
tipe.set(id) = tipeuu(id) ; // type of remaining indices =
} // same as uu indices
if (valence0 == 2) { // if u is a rank 2 tensor, the result is a Vector
resu = new Vector(*mp, tipe(0), *triad) ;
}
else {
// if uu is a Tensor_sym, the result might be also a Tensor_sym:
const Tensor* puu = &uu ;
const Tensor_sym* puus = dynamic_cast<const Tensor_sym*>(puu) ;
if ( puus != 0x0 ) { // the input tensor is symmetric
if (puus->sym_index2() != valence0 - 1) {
// the symmetry is preserved:
if (valence1 == 2) {
resu = new Sym_tensor(*mp, tipe, *triad) ;
}
else {
resu = new Tensor_sym(*mp, valence1, tipe, *triad,
puus->sym_index1(), puus->sym_index2()) ;
}
}
else { // the symmetry is lost:
resu = new Tensor(*mp, valence1, tipe, *triad) ;
}
}
else { // no symmetry in the input tensor:
resu = new Tensor(*mp, valence1, tipe, *triad) ;
}
}
}
int ncomp1 = resu->get_n_comp() ;
Itbl ind0(valence0) ; // working Itbl to store the indices of uu
Itbl ind1(valence1) ; // working Itbl to store the indices of resu
Itbl ind(valence0) ; // working Itbl to store the indices of uu
Scalar tmp(*mp) ; // working scalar
// Determination of the dzpuis parameter of the input --> dz_in
// ---------------------------------------------------
int dz_in = 0 ;
for (int ic=0; ic<ncomp0; ic++) {
int dzp = uu(uu.indices(ic)).get_dzpuis() ;
assert(dzp >= 0) ;
if (dzp > dz_in) dz_in = dzp ;
}
#ifndef NDEBUG
// Check : do all components have the same dzpuis ?
for (int ic=0; ic<ncomp0; ic++) {
if ( !(uu(uu.indices(ic)).check_dzpuis(dz_in)) ) {
cout << "######## WARNING #######\n" ;
cout << " Connection::p_divergence : the tensor components \n"
<< " do not have all the same dzpuis ! : \n"
<< " ic, dzpuis(ic), dz_in : " << ic << " "
<< uu(uu.indices(ic)).get_dzpuis() << " " << dz_in << endl ;
}
}
#endif
// The 1-form Delta^k_{lk} is required
// -----------------------------------
Vector delta_trace = delta.trace(0,2) ; // Delta^k_{lk}
// Initialisation to the flat divergence
// -------------------------------------
*resu = uu.divergence(*flat_met) ;
// Addition of the Delta terms
// ----------------------------
// loop on all the components of the output tensor
for (int ic=0; ic<ncomp1; ic++) {
// indices corresponding to the component no. ic in the output tensor
ind1 = resu->indices(ic) ;
// Indices of the input tensor (but the last one)
for (int id = 0; id < valence1; id++) {
ind0.set(id) = ind1(id) ;
}
// Addition of the Delta^k_{lk} term
tmp = 0 ;
for (int l=1; l<=3; l++) {
ind0.set(valence0m1) = l ; // summation on the last index of uu
tmp += delta_trace(l) * uu(ind0) ;
}
ind0.set(valence0m1) = -1 ; // unvalid value for the last index
// because it should no longer be used
// Addition of the other Delta terms
for (int id=0; id<valence1; id++) { // Loop on the number of indices
// the result
ind = ind0 ;
switch( uu.get_index_type(id) ) {
case CON : {
for (int l=1; l<=3; l++) {
ind.set(id) = l ;
for (int k=1; k<=3; k++) {
ind.set(valence0m1) = k ;
tmp += delta(ind0(id), l, k) * uu(ind) ;
}
}
break ;
}
case COV : {
for (int l=1; l<=3; l++) {
ind.set(id) = l ;
for (int k=1; k<=3; k++) {
ind.set(valence0m1) = k ;
tmp -= delta(l, ind0(id), k) * uu(ind) ;
}
}
break ;
}
default : {
cerr <<
"Connection::p_divergence : unexpected type of index !\n" ;
abort() ;
break ;
}
} // end of switch on index type
} // end of loop on the number of indices of the result
if (dz_in > 0) tmp.dec_dzpuis() ; // to get the same dzpuis as
// the flat divergence
resu->set(ind1) += tmp ; // addition to the flat divergence part
} // end of loop on all the components of the output tensor
// C'est fini !
// ------------
return resu ;
}
//--------------
// Ricci tensor
//--------------
const Tensor& Connection::ricci() const {
if (p_ricci == 0x0) { // a new computation is necessary
if (assoc_metric) { // The Ricci tensor is symmetric if the
// connection is associated with some metric
p_ricci = new Sym_tensor(*mp, COV, *triad) ;
}
else {
p_ricci = new Tensor(*mp, 2, COV, *triad) ;
}
const Tensor& d_delta = delta.derive_cov(*flat_met) ;
for (int i=1; i<=3; i++) {
int jmax = assoc_metric ? i : 3 ;
for (int j=1; j<=jmax; j++) {
Scalar tmp1(*mp) ;
tmp1.set_etat_zero() ;
for (int k=1; k<=3; k++) {
tmp1 += d_delta(k,i,j,k) ;
}
Scalar tmp2(*mp) ;
tmp2.set_etat_zero() ;
for (int k=1; k<=3; k++) {
tmp2 += d_delta(k,i,k,j) ;
}
Scalar tmp3(*mp) ;
tmp3.set_etat_zero() ;
for (int k=1; k<=3; k++) {
for (int m=1; m<=3; m++) {
tmp3 += delta(k,k,m) * delta(m,i,j) ;
}
}
tmp3.dec_dzpuis() ; // dzpuis 4 -> 3
Scalar tmp4(*mp) ;
tmp4.set_etat_zero() ;
for (int k=1; k<=3; k++) {
for (int m=1; m<=3; m++) {
tmp4 += delta(k,j,m) * delta(m,i,k) ;
}
}
tmp4.dec_dzpuis() ; // dzpuis 4 -> 3
p_ricci->set(i,j) = tmp1 - tmp2 + tmp3 - tmp4 ;
}
}
}
return *p_ricci ;
}
}
|