1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
* Methods of class Excised_slice
*
* (see file excised_slice.h for documentation)
* Disclaimer: the class Isol_hole() is redundant with this class under a set of parameters;
* therefore it has to go at some point.
*/
/*
* Copyright (c) 2010 Nicolas Vasset
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
// Headers C
#include "math.h"
// Headers Lorene
#include "excised_slice.h"
#include "spheroid.h"
#include "excision_surf.h"
#include "excision_hor.h"
#include "utilitaires.h"
#include "param.h"
#include "unites.h"
#include "proto.h"
namespace Lorene {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
//--------------//
// Constructors //
//--------------//
// Standard constructor
// --------------------
Excised_slice::Excised_slice (const Map& mpi, int hor_type, int scheme_type)
: mp(mpi),
type_hor(hor_type),
field_set(scheme_type),
lapse(mpi),
conf_fact(mpi),
shift(mpi, CON, mpi.get_bvect_spher()),
hij(mpi, CON, mpi.get_bvect_spher()),
hatA(mpi, CON, mpi.get_bvect_spher()),
Xx(mpi, CON, mpi.get_bvect_spher()){
// Pointers of derived quantities initialized to zero :
set_der_0x0() ;
// Initializing primary quantities.
lapse = 1. ;
conf_fact = 1. ;
shift.set_etat_zero() ;
hij.set_etat_zero();
hatA.set_etat_zero();
Xx.set_etat_zero();
}
// Copy constructor
// ----------------
Excised_slice::Excised_slice(const Excised_slice& ih)
: mp(ih.mp),
type_hor(ih.type_hor),
field_set(ih.field_set),
lapse(ih.lapse),
conf_fact(ih.conf_fact),
shift(ih.shift),
hij(ih.hij),
hatA(ih.hatA),
Xx(ih.Xx){
set_der_0x0() ;
}
// Constructor from a file
// -----------------------
Excised_slice::Excised_slice(const Map& mpi, int hor_type, int scheme_type, FILE* fich)
: mp(mpi),
type_hor(hor_type),
field_set(scheme_type),
lapse(mpi,*(mpi.get_mg()), fich),
conf_fact(mpi,*(mpi.get_mg()), fich),
shift(mpi, mpi.get_bvect_spher(), fich),
hij(mpi, mpi.get_bvect_spher(), fich),
hatA(mpi, mpi.get_bvect_spher(), fich),
Xx(mpi, mpi.get_bvect_spher(), fich){
// Pointers of derived quantities initialized to zero
// --------------------------------------------------
set_der_0x0() ;
}
//------------//
// Destructor //
//------------//
Excised_slice::~Excised_slice(){
del_deriv() ;
}
//----------------------------------//
// Management of derived quantities //
//----------------------------------//
void Excised_slice::del_deriv() const {
if (p_hor != 0x0) delete p_hor ;
if (p_adm_mass != 0x0) delete p_adm_mass ;
if (p_komar_angmom != 0x0) delete p_komar_angmom ;
if (p_virial_residue != 0x0) delete p_virial_residue ;
Excised_slice::set_der_0x0() ;
}
void Excised_slice::set_der_0x0() const {
p_hor = 0x0;
p_adm_mass = 0x0 ;
p_komar_angmom = 0x0 ;
p_virial_residue = 0x0 ;
}
//--------------//
// Assignment //
//--------------//
// Assignment to another Excised_slice
// ----------------------------
void Excised_slice::operator=(const Excised_slice& ih) {
assert( &(ih.mp) == &mp ) ; // Same mapping
type_hor = ih.type_hor ;
field_set = ih.field_set ;
lapse = ih.lapse ;
conf_fact = ih.conf_fact ;
shift = ih.shift ;
hij = ih.hij ;
hatA = ih.hatA ;
Xx = ih.Xx;
del_deriv() ; // Deletes all derived quantities
}
//--------------//
// Outputs //
//--------------//
// Save in a file
// --------------
void Excised_slice::sauve(FILE* fich) const {
lapse.sauve(fich) ;
conf_fact.sauve(fich) ;
shift.sauve(fich);
hij.sauve(fich);
hatA.sauve(fich);
Xx.sauve(fich);}
// Prints out maximal errors in Einstein equations for the obtained metric fields
void Excised_slice::Einstein_errors() {
const Map_af* map = dynamic_cast<const Map_af*>(&mp) ;
const Metric_flat& mets = (*map).flat_met_spher() ;
Sym_tensor gamtcon = mets.con() + hij;
Metric gamt(gamtcon);
Sym_tensor gamcon = gamtcon/(conf_fact*conf_fact*conf_fact*conf_fact);
gamcon.std_spectral_base();
Metric gam(gamcon);
Sym_tensor k_uu = hatA/(pow(conf_fact,10)) ;
k_uu.std_spectral_base();
k_uu.dec_dzpuis(k_uu(1,1).get_dzpuis()); //WTF?
Sym_tensor k_dd = k_uu.up_down(gam);
Scalar TrK3 = k_uu.trace(gam);
// Hamiltonian constraint
//-----------------------
Scalar ham_constr = gam.ricci_scal() ;
ham_constr.dec_dzpuis(3) ; // To check
ham_constr += TrK3*TrK3 - contract(k_uu, 0, 1, k_dd, 0, 1) ;
maxabs(ham_constr, "Hamiltonian constraint: ") ;
// Momentum constraint
//-------------------
Vector mom_constr = k_uu.divergence(gam) - TrK3.derive_con(gam) ;
mom_constr.dec_dzpuis(2) ; // To check
maxabs(mom_constr, "Momentum constraint: ") ;
// Evolution equations
//--------------------
Sym_tensor evol_eq = lapse*gam.ricci()
- lapse.derive_cov(gam).derive_cov(gam);
evol_eq.dec_dzpuis() ;
evol_eq += k_dd.derive_lie(shift) ;
evol_eq.dec_dzpuis(2) ; // To check
evol_eq += lapse*(TrK3*k_dd - 2*contract(k_dd, 1, k_dd.up(0, gam), 0) ) ;
maxabs(evol_eq, "Evolution equations: ") ;
return;
}
//----------------------------//
// Accessors/ Derived data //
//----------------------------//
// Computation of the Spheroid corresponding to the black hole excision surface.
Spheroid Excised_slice::hor() {
const Map_af* map = dynamic_cast<const Map_af*>(&mp) ;
const Mg3d* mgrid = (*map).get_mg();
// Construct angular grid for h(theta,phi)
const Mg3d* g_angu = (*mgrid).get_angu_1dom() ;
const Coord& rr = (*map).r;
Scalar rrr (*map) ;
rrr = rr ;
rrr.std_spectral_base();
assert((rrr.val_grid_point(1,0,0,0) - 1.) <= 1.e-9); // For now the code handles only horizons at r=1, corresponding to the first shell inner boundary. This test assures this is the case with our mapping.
// Angular mapping defined for one domain (argument of spheroid Class)
//--------------------------------------------------------------------
double r_limits2[] = {rrr.val_grid_point(1,0,0,0), rrr.val_grid_point(2,0,0,0)} ;
const Map_af map_2(*g_angu, r_limits2);
//Full 3-metric and extrrinsic curvature
const Metric_flat& mets = (*map).flat_met_spher() ;
Sym_tensor gamtcon = mets.con() + hij;
Metric gamt(gamtcon);
Sym_tensor gamcon = gamtcon/(conf_fact*conf_fact*conf_fact*conf_fact);
Metric gam(gamcon);
Sym_tensor kuu = hatA/pow(conf_fact,10) ;
kuu.std_spectral_base();
Sym_tensor kdd = kuu.up_down(gam);
//---------------------------------------------------------
// Construction of the spheroid associated with those data
//--------------------------------------------------------
double hor_posd = rrr.val_grid_point(1,0,0,0);
Scalar hor_pos(map_2); hor_pos = hor_posd; hor_pos.std_spectral_base();
Spheroid hor_loc(hor_pos, gam, kdd);
return hor_loc;
}
// Computation of the ADM mass of the BH spacetime
double Excised_slice::adm_mass() {
const Map_af* map = dynamic_cast<const Map_af*>(&mp) ;
const Metric_flat& mets = (*map).flat_met_spher() ;
Sym_tensor gamtcon = mets.con() + hij;
Metric gamt(gamtcon);
Sym_tensor gamcon = gamtcon/(conf_fact*conf_fact*conf_fact*conf_fact);
Metric gam(gamcon);
Scalar detgam = sqrt((gam.cov())(2,2)*(gam.cov())(3,3) - (gam.cov())(2,3)*(gam.cov())(3,2));
detgam.std_spectral_base();
Vector corr_adm = - (0.125*contract(gamt.cov().derive_con(mets),1,2));
Scalar admintegr = conf_fact.dsdr() + corr_adm(1);
double M_ADM = - (1/(2.*3.1415927*ggrav))*(*map).integrale_surface_infini(admintegr*detgam);
return M_ADM;
}
// Computation of the Komar angular momentum w.r.t. assumed rotational symmetry
double Excised_slice:: komar_angmom() {
const Map_af* map = dynamic_cast<const Map_af*>(&mp) ;
const Metric_flat& mets = (*map).flat_met_spher() ;
Sym_tensor gamtcon = mets.con() + hij;
Sym_tensor gamcon = gamtcon/(conf_fact*conf_fact*conf_fact*conf_fact);
gamcon.std_spectral_base();
Metric gam(gamcon);
Sym_tensor k_uu = hatA/(pow(conf_fact,10));
k_uu.std_spectral_base();
k_uu.dec_dzpuis(k_uu(1,1).get_dzpuis()); //WTF?
Sym_tensor k_dd = k_uu.up_down(gam);
Scalar detgam = sqrt((gam.cov())(2,2)*(gam.cov())(3,3) - (gam.cov())(2,3)*(gam.cov())(3,2));
detgam.std_spectral_base();
Scalar contraction = k_dd(1,3); contraction.mult_r_dzpuis(2); contraction.mult_sint();
double angu_komar = - (1/(8.*3.1415927*ggrav))*(*map).integrale_surface_infini(detgam*contraction);
return angu_komar;
}
// Computation of the Virial residual, as rescaled difference at infinity
// between the ADM mass and the Komar integral associated to the mass
double Excised_slice::virial_residue() {
const Mg3d* mgrid = mp.get_mg();
const int nz = (*mgrid).get_nzone(); // Number of domains
Valeur** devel_psi (conf_fact.asymptot(1)) ;
Valeur** devel_n (lapse.asymptot(1)) ;
double erreur = (2*(*devel_psi[1])(nz-1, 0, 0, 0)
+ (*devel_n[1])(nz-1, 0, 0, 0))/fabs ((*devel_n[1])(nz-1, 0, 0, 0)) ;
return erreur;
}
}
|