1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
/*
* Method of class Isol_Hole to compute metric data associated to a quasistationary single
* black hole spacetime slice.
*
* (see file isol_hole.h for documentation).
*
*/
/*
* Copyright (c) 2009 Nicolas Vasset
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
// Headers Lorene
#include "param_elliptic.h"
#include "proto.h"
#include "excised_slice.h"
#include "unites.h"
namespace Lorene {
void Excised_slice::compute_stat_metric(double precis, double Omega, bool NorKappa,
Scalar boundNoK, bool isCF,double relax, int mer_max,
int mer_max2, bool isvoid) {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
// Verifying that we are in the right case
assert(type_hor==1);
// Noticing the user that the iteration has started
cout << "================================================================" << endl;
cout << "STARTING THE MAIN ITERATION FOR COMPUTING METRIC FIELDS" << endl;
cout << " iteration parameters are the following: " << endl;
cout << " convergence precision required:" << precis << endl;
cout << " max number of global steps :" << mer_max << endl;
cout << " relaxation parameter :" << relax << endl;
cout << "================================================================" << endl;
// Construction of a multi-grid (Mg3d) and an affine mapping from the class mapping
// --------------------------------------------------------------------------------
const Map_af* map = dynamic_cast<const Map_af*>(&mp) ;
const Mg3d* mgrid = (*map).get_mg();
// Construct angular grid for h(theta,phi)
const Mg3d* g_angu = (*mgrid).get_angu_1dom() ;
const int nz = (*mgrid).get_nzone(); // Number of domains
int nt = (*mgrid).get_nt(1); // Number of collocation points in theta in each domain
const int np = (*mgrid).get_np(1);
const Coord& rr = (*map).r;
Scalar rrr (*map) ;
rrr = rr ;
rrr.std_spectral_base();
// For now the code handles only horizons at r=1, corresponding to the first shell
// inner boundary. This test assures this is the case with our mapping.
assert((rrr.val_grid_point(1,0,0,0) - 1.) <= 1.e-9);
// Angular mapping defined as well
//--------------------------------
double r_limits2[] = {rrr.val_grid_point(1,0,0,0), rrr.val_grid_point(2,0,0,0)} ;
const Map_af map_2(*g_angu, r_limits2); //2D mapping; check if this is useful.
const Metric_flat& mets = (*map).flat_met_spher() ;
//----------------
// Initializations
// ---------------
Scalar logn (*map) ; logn = log(lapse) ;
logn.std_spectral_base();
Scalar logpsi(*map) ; logpsi = log(conf_fact) ;
logpsi.std_spectral_base();
Scalar psi4 (*map) ; psi4 = conf_fact*conf_fact*conf_fact*conf_fact ;
Scalar npsi (*map) ; npsi =conf_fact*lapse ;
Scalar conf_fact_new(*map) ; conf_fact_new.annule_hard(); conf_fact_new.std_spectral_base();
Scalar npsi_new(*map); npsi_new.annule_hard(); npsi_new.std_spectral_base();
Vector shift_new (*map, CON, (*map).get_bvect_spher());
for(int i=1; i<=3; i++){
shift_new.set(i)=0;
}
shift_new.std_spectral_base();
// Non conformally flat variables
//-------------------------------
Sym_tensor gamtuu = mets.con() + hij;
Metric gamt(gamtuu);
Metric gam(gamt.cov()*psi4) ;
Sym_tensor gamma = gam.cov();
// Extrinsic curvature variables
//------------------------------
Sym_tensor aa(*map, CON, (*map).get_bvect_spher());
for (int iii= 1; iii<=3; iii++){
for(int j=1; j<=3; j++){
aa.set(iii,j)= 0;
}
}
aa.std_spectral_base();
Scalar aa_quad_scal(*map) ; aa_quad_scal = 0. ;
Sym_tensor aa_hat(*map, CON, (*map).get_bvect_spher());
for (int iii= 1; iii<=3; iii++){
for(int j=1; j<=3; j++){
aa_hat.set(iii,j)= 0;
}
}
Sym_tensor kuu = aa/psi4 ;
Sym_tensor kuu2 = aa_hat/(psi4*psi4*sqrt(psi4));
Sym_tensor kdd = contract (gamma, 0, contract(gamma, 1, kuu, 0),1);
// (2,1)-rank delta tensor: difference between ricci rotation coefficients.
//-------------------------------------------------------------------------
Tensor delta = -0.5*contract( hij, 1, gamt.cov().derive_cov(mets), 2);
Scalar tmp(*map);
for (int i=1; i<=3; i++) {
for (int j=1; j<=3; j++) {
for (int k=1; k<=3; k++) {
tmp = 0.;
tmp = -0.5 *(gamt.cov().derive_con(mets))(i,j,k);
for (int l=1; l<=3; l++) {
tmp += -0.5*( gamt.cov()(i,l)*(hij.derive_cov(mets))(k,l,j)
+ gamt.cov()(l,j)*(hij.derive_cov(mets))(k,l,i));
}
delta.set(k,i,j) += tmp ;
}
}
}
// Conformal Rstar scalar(eq 61, Bonazzola et al. 2003)
Scalar Rstar =
0.25 * contract(gamt.con(), 0, 1,
contract(hij.derive_cov(mets), 0, 1, gamt.cov().derive_cov(mets), 0, 1), 0, 1 )
- 0.5 * contract(gamt.con(), 0, 1,
contract(hij.derive_cov(mets), 0, 1, gamt.cov().derive_cov(mets), 0, 2), 0, 1 ) ;
Scalar norm(*map);
Scalar norm3(*map);
if (isvoid == false){
cout <<"FAIL: case of non-void spacetime not treated yet" << endl;
}
else {
// Parameters for the iteration
//-----------------------------
double diff_ent = 1 ; // initialization of difference marker between two iterations;
int util = 0; // Tool used to stop tensorial iteration at any wished step "util"
//////////////////////////////////////////////////////////////////////////////////////////////////
///////////// ITERATION ////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
for(int mer=0 ;(diff_ent > precis) && (mer<mer_max) ; mer++) {
//Global relaxation coefficient
// Scalar variables linked to the norm of normal vector to horizon.
norm = sqrt(1. + hij(1,1)); norm.std_spectral_base();
norm3 = sqrt(1. + hij(3,3)); norm3.std_spectral_base();
///////////////////////////
// Solving for (Psi-1) //
///////////////////////////
// Setting of the boundary
//------------------------
double diric= 0.;
double neum = 1.;
Vector ssalt = rrr.derive_cov(gam);
Vector ssaltcon = ssalt.up_down(gam);
Scalar ssnormalt = sqrt(contract (ssalt,0, ssaltcon, 0));
ssnormalt.std_spectral_base();
ssalt.annule_domain(nz-1);
ssalt.annule_domain(0);
ssaltcon.annule_domain(nz-1);
ssaltcon.annule_domain(0);
ssalt = ssalt/ssnormalt;
ssaltcon = ssaltcon/ssnormalt;
// \tilde{s} in the notations of Gourgoulhon and Jaramillo, 2006
Vector ssconalt = ssaltcon*conf_fact*conf_fact;
ssconalt.std_spectral_base();
ssconalt.annule_domain(nz-1);
Scalar bound3bis = -((1./conf_fact)*contract((contract(kdd,1,ssconalt,0)),0, ssconalt,0));
bound3bis.annule_domain(nz-1);
bound3bis += -conf_fact*ssconalt.divergence(gamt);
bound3bis.annule_domain(nz-1);
bound3bis = 0.25*bound3bis;
bound3bis += -contract(conf_fact.derive_cov(gamt),0,ssconalt,0) + conf_fact.dsdr();
bound3bis.annule_domain(nz-1);
bound3bis.std_spectral_base();
bound3bis.set_spectral_va().ylm();
Mtbl_cf *boundd3bis = bound3bis.set_spectral_va().c_cf;
// Computing the source
//---------------------
Scalar source_conf_fact(*map) ; source_conf_fact=3. ; // Pour le fun...
source_conf_fact.std_spectral_base();
Scalar d2logpsi = contract(conf_fact.derive_cov(mets).derive_cov(mets), 0, 1, hij, 0,1);
d2logpsi.inc_dzpuis(1);
source_conf_fact = -(0.125* aa_quad_scal )/(psi4*conf_fact*conf_fact*conf_fact)
+ conf_fact* 0.125* Rstar - d2logpsi;
source_conf_fact.std_spectral_base();
if (source_conf_fact.get_etat() == ETATZERO) {
source_conf_fact.annule_hard() ;
source_conf_fact.set_dzpuis(4) ;
source_conf_fact.std_spectral_base() ;
}
source_conf_fact.set_spectral_va().ylm();
// System inversion
//-----------------
Param_elliptic source11(source_conf_fact);
// Resolution has been done for quantity Q-1,
// because our solver gives a vanishing solution at infinity!
conf_fact_new =
source_conf_fact.sol_elliptic_boundary(source11, *boundd3bis, diric , neum) + 1 ;
// tests for resolution
//---------------------
Scalar baba2 = (conf_fact_new-1).laplacian();
// cout << "psi+1-resolution" << endl;
// maxabs (baba2 - source_conf_fact);
Scalar psinewbis = conf_fact_new -1. ; psinewbis.annule_domain(nz -1);
psinewbis.std_spectral_base();
psinewbis = psinewbis.dsdr();
Scalar psinewfin2 (map_2) ;
psinewfin2.allocate_all();
psinewfin2.set_etat_qcq();
psinewfin2.std_spectral_base();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
psinewfin2.set_grid_point(0, k, j, 0) =
psinewbis.val_grid_point(1, k,j,0) - bound3bis.val_grid_point(1, k, j, 0);
}
// maxabs (psinewfin2);
// Update during the loop
//-----------------------
conf_fact = conf_fact_new* (1-relax) + conf_fact* relax ;
psi4 = conf_fact*conf_fact*conf_fact*conf_fact;
logpsi = log(conf_fact) ;
logpsi.std_spectral_base();
//////////////////////////
// Solving for (N*Psi -1)/
//////////////////////////
// Setting of the boundary
//------------------------
assert (NorKappa == false) ;
Scalar bound(*map);
bound = (boundNoK)*conf_fact -1;
bound.annule_domain(nz -1);
bound.std_spectral_base();
bound.set_spectral_va().ylm();
Mtbl_cf *boundd = bound.get_spectral_va().c_cf;
diric =1;
neum = 0 ;
// Computing the source ...
//-------------------------
Scalar d2lognpsi = contract(npsi.derive_cov(mets).derive_cov(mets), 0, 1, hij, 0,1);
d2lognpsi.inc_dzpuis(1); // dzpuis correction.
Scalar source_npsi = npsi*(aa_quad_scal*(7./8.)/(psi4*psi4) + Rstar/8.) - d2lognpsi;
source_npsi.std_spectral_base();
if (source_npsi.get_etat() == ETATZERO) {
source_npsi.annule_hard() ;
source_npsi.set_dzpuis(4) ;
source_npsi.std_spectral_base() ;
}
// Inversion of the operator
//--------------------------
Param_elliptic source1 (source_npsi);
npsi_new = source_npsi.sol_elliptic_boundary(source1, *boundd, diric, neum) ;
npsi_new = npsi_new +1;
// Resolution tests in npsi
//-------------------------
Scalar baba = npsi_new.laplacian();
// cout << "resolution_npsi" << endl;
// maxabs (baba - source_npsi);
// cout << "bound_npsi" << endl;
Scalar npsibound2 (map_2) ;
npsibound2.allocate_all();
npsibound2.set_etat_qcq();
npsibound2.std_spectral_base();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
npsibound2.set_grid_point(0, k, j, 0) =
npsi_new.val_grid_point(1, k,j,0) - bound.val_grid_point(1, k, j, 0) -1.;
}
// maxabs (npsibound2);
// Update during the loop
//-----------------------
npsi = npsi_new*(1-relax) + npsi* relax;
lapse = npsi/conf_fact;
logn = log(lapse);
logn.std_spectral_base();
///////////////////////
//Resolution in Beta //
////////////////////////
// Setting of the boundary
//------------------------
bound = (boundNoK)/(conf_fact*conf_fact) ;
bound.annule_domain(nz -1);
// Rotation parameter for spacetime
Scalar hor_rot(*map); hor_rot.annule_hard(); hor_rot = Omega;
hor_rot.std_spectral_base() ; hor_rot.mult_rsint();
hor_rot.annule_domain(nz -1);
Vector limit = shift_new;
Vector ephi(*map, CON, (*map).get_bvect_spher());
ephi.set(1).annule_hard();
ephi.set(2).annule_hard();
ephi.set(3) = 1;
ephi.std_spectral_base();
ephi.annule_domain(nz -1);
limit = bound*ssconalt + hor_rot*ephi;
// Boundary is fixed by value of 3 components of a vector (rather than value of potentials)
limit.std_spectral_base();
Scalar Vrb = limit(1); Vrb.set_spectral_va().ylm();
Scalar mmub = limit.mu(); mmub.set_spectral_va().ylm();
Scalar etab = limit.eta(); etab.set_spectral_va().ylm();
// Computing the source
//---------------------
Vector deltaA = - 2*lapse*contract(delta, 1,2, aa, 0,1);
Vector hijddb = - contract (shift.derive_cov(mets).derive_cov(mets), 1,2, hij, 0,1) ;
Vector hijddivb =
- 0.3333333333333* contract (shift.divergence(mets).derive_cov(mets),0, hij,1);
hijddb.inc_dzpuis(); // dzpuis fixing patch...
hijddivb.inc_dzpuis();
Vector sourcevect2(*map,CON, (*map).get_bvect_spher());
sourcevect2 = 2.* contract(aa, 1, lapse.derive_cov(mets),0)
- 12*lapse*contract(aa, 1, logpsi.derive_cov(mets), 0)
+ deltaA + hijddb + hijddivb ;
sourcevect2.set(1).set_dzpuis(4);
sourcevect2.set(2).set_dzpuis(4);
sourcevect2.set(3).set_dzpuis(4);
sourcevect2.std_spectral_base();
if(sourcevect2.eta().get_etat() == ETATZERO)
{ sourcevect2.set(2).annule_hard();}
double lam = (1./3.);
// System inversion
//-----------------
sourcevect2.poisson_boundary2(lam, shift_new, Vrb, etab, mmub, 1., 0., 1. ,0. ,1. ,0.) ;
// resolution tests
//-----------------
Vector source2 = contract(shift_new.derive_con(mets).derive_cov(mets), 1,2)
+ lam* contract(shift_new.derive_cov(mets), 0,1).derive_con(mets);
source2.inc_dzpuis(1);
// maxabs (source2 - sourcevect2);
Scalar mufin = shift_new.mu();
mufin.set_spectral_va().coef();
Scalar mufin2 (map_2) ;
mufin2.allocate_all();
mufin2.set_etat_qcq();
mufin2.std_spectral_base();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
mufin2.set_grid_point(0, k, j, 0) =
mufin.val_grid_point(1, k,j,0) - mmub.val_grid_point(1, k, j, 0);
}
// maxabs (mufin2);
Scalar brfin = shift_new(1);
brfin.set_spectral_va().coef();
Scalar brfin2 (map_2) ;
brfin2.allocate_all();
brfin2.set_etat_qcq();
brfin2.std_spectral_base();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
brfin2.set_grid_point(0, k, j, 0) =
brfin.val_grid_point(1, k,j,0) - Vrb.val_grid_point(1, k, j, 0);
}
// maxabs (brfin2);
// Update during the loop
//-----------------------
for (int ii=1; ii <=3; ii++){
shift.set(ii) = shift_new(ii)*(1-relax) + shift(ii)* relax;
}
diff_ent = max(maxabs(npsi_new - npsi )); // Convergence parameter (discutable relevance...)
////////////////////////////////////
// Tensor hij resolution ///
///////////////////////////////////
if (isCF == false){
if (diff_ent <=5.e-3) { // No resolution until we are close to the result.
//WARNING; parameter maybe to be changed according to convergence parameters
//in Poisson-Hole/Kerr1.9/pplncp.C
util = util+1; // Loop marker for NCF equation.
///////////////////////////////////////////////////////////////////////////////////////////
///////////// ITERATION /////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
// Local convergence can be asked for hij equation.
// Allows to satisfy integrability conditions.
// Here we ask for a local convergence; this can be improved later.
// WARNING; parameter maybe to be changed according to convergence parameters
// in Poisson-Hole/Kerr1.9/pplncp.C
double precis2 = 1.e5*precis ;
double diff_ent2 = 1 ; // Local convergence marker
// Local relaxation parameter. If not 1, the determinant condition won't be satisfied
// on a particular iteration.
double relax2 = 0.5;
Sym_tensor sourcehij = hij; // Random initialization...
// cuts off high spherical harmonics with threshold being the last argument.
// coupe_l_tous (hij, aa, nn, ppsi, bb, nt, 6);
for(int mer2=0 ;(diff_ent2 > precis2) && (mer2<mer_max2) ; mer2++) {
// Calculation of the source
//--------------------------
// The double Lie derivative term is taken care of in the subroutine.
secmembre_kerr(sourcehij);
//System inversion (note that no boundary condition is imposed)
//-------------------------------------------------------------
Sym_tensor hij_new = hij;
hij_new = boundfree_tensBC (sourcehij, shift , conf_fact, lapse, hij, precis2);
cout << "maximum of convergence marker for the subiteration" << endl;
diff_ent2 = max(maxabs(hij - hij_new));
hij = relax2*hij_new + (1 - relax2)*hij;
cout << "mer2, diffent2" << endl;
cout << mer2 << endl;
cout << diff_ent2 << endl;
}
// Resolution tests
//-----------------
Sym_tensor gammatilde = mets.con() + hij;
Metric gammatilde2(gammatilde); Scalar detgam = gammatilde2.determinant();
// cout << "determinant of result" << endl;
// maxabs (detgam-1.);
// cout << "comment l'equation en hij est elle verifiee?" << endl;
Sym_tensor test =contract (hij.derive_cov(mets).derive_con(mets), 2,3);
test.annule(nz-1, nz-1);
test = test
- hij.derive_lie(shift).derive_lie(shift)
/ ((lapse/(conf_fact*conf_fact))*(lapse/(conf_fact*conf_fact)));
test.annule(nz-1, nz-1);
Sym_tensor youps = test
- sourcehij
/ ((lapse/(conf_fact*conf_fact))*(lapse/(conf_fact*conf_fact)));
// maxabs (youps);
// maxabs((youps).trace(mets));
// cout << " AAABBB" << endl;
// maxabs((youps).compute_A());
// maxabs((youps).compute_tilde_B());
}
}
////////////////////////////////////////////////////
// Global variable update after an entire loop ////
///////////////////////////////////////////////////
gamtuu = mets.con() + hij;
gamt = gamtuu; // Metric
gam = gamt.cov()*psi4;
gamma = gam.cov();
for (int i=1; i<=3; i++) {
for (int j=1; j<=3; j++) {
tmp = 0;
tmp = ((shift.derive_con(mets))(i,j) + (shift.derive_con(mets))(j,i)
- (2./3.)*shift.divergence(mets) * mets.con()(i,j))*(1./(2.*lapse));
aa.set(i,j) = tmp ;
}
}
//Non conformally flat correction; we assume here dhij/dt = 0.
aa = aa - (hij.derive_lie(shift) + (2./3.)*shift.divergence(mets)*hij)*(1./(2.*lapse));
aa_hat = aa*psi4*sqrt(psi4); // Rescaling of traceless exrinsic curvature.
aa_hat.std_spectral_base();
hatA = aa_hat; // Probably obsolete very soon... replace aa_hat by hatA.
Sym_tensor aaud = aa.up_down(gamt);
Sym_tensor aaud_hat = aa_hat.up_down(gamt);
aa_quad_scal = contract(contract (aa_hat, 0, aaud_hat, 0), 0,1);
delta = -0.5*contract( hij, 1, gamt.cov().derive_cov(mets), 2);
for (int i=1; i<=3; i++) {
for (int j=1; j<=3; j++) {
for (int k=1; k<=3; k++) {
tmp = 0.;
tmp = -0.5 *(gamt.cov().derive_con(mets))(i,j,k);
for (int l=1; l<=3; l++) {
tmp += -0.5*( gamt.cov()(i,l)*(hij.derive_cov(mets))(k,l,j)
+ gamt.cov()(l,j)*(hij.derive_cov(mets))(k,l,i));
}
delta.set(k,i,j) += tmp ;
}
}
}
Rstar =
0.25 * contract(gamt.con(), 0, 1,
contract(gamt.con().derive_cov(mets), 0, 1,
gamt.cov().derive_cov(mets), 0, 1), 0, 1 )
- 0.5 * contract(gamt.con(), 0, 1,
contract(gamt.con().derive_cov(mets), 0, 1,
gamt.cov().derive_cov(mets), 0, 2), 0, 1 ) ;
kuu = aa/(psi4);
kdd = contract (gamma, 0, contract(gamma, 1, kuu, 0),1);
// Convergence markers
//--------------------
cout << "diffent" << endl;
cout<< diff_ent << endl;
cout <<"mer" << mer << endl;
//------------------------------------------------
// Check of Einstein equations (3+1 form)
//------------------------------------------------
// Lapse
//------
Scalar lapse2(*map) ;
lapse2 = lapse ;
lapse2.std_spectral_base();
// 3-metric
//---------
// const Metric gam(mets.cov()*psi4) ;
Sym_tensor gamt2(*map, COV, (*map).get_bvect_spher());
for (int i=1; i<=3; i++)
for (int j=1; j<=3; j++)
{ gamt2.set(i,j)=gam.cov()(i,j);
}
//Shift
//-----
Vector beta = shift ;
// Extrinsic curvature
//--------------------
Scalar TrK3(*map);
Sym_tensor k_uu = aa/(psi4) ;
k_uu.dec_dzpuis(k_uu(1,1).get_dzpuis());
// Another way of computing the same thing, just to be sure...
Sym_tensor k_dd = k_uu.up_down(gam);
TrK3 = k_uu.trace(gam);
// TrK3.spectral_display("TraceKvraie", 1.e-10);
// Hamiltonian constraint
//-----------------------
Scalar ham_constr = gam.ricci_scal() ;
ham_constr.dec_dzpuis(3) ;
ham_constr += TrK3*TrK3 - contract(k_uu, 0, 1, k_dd, 0, 1) ;
// maxabs(ham_constr, "Hamiltonian constraint: ") ;
ham_constr.set_spectral_va().ylm();
// ham_constr.spectral_display("ham_constr", 1.e-9);
// Momentum constraint
//-------------------
Vector mom_constr = k_uu.divergence(gam) - TrK3.derive_con(gam) ;
mom_constr.dec_dzpuis(2) ;
// maxabs(mom_constr, "Momentum constraint: ") ;
// mom_constr(1).spectral_display("mom1", 1.e-9) ;
// mom_constr(2).spectral_display("mom2", 1.e-9) ;
// mom_constr(3).spectral_display("mom3", 1.e-9) ;
// Evolution equations
//--------------------
Sym_tensor evol_eq = lapse2*gam.ricci() - lapse2.derive_cov(gam).derive_cov(gam);
evol_eq.dec_dzpuis() ;
evol_eq += k_dd.derive_lie(beta) ;
evol_eq.dec_dzpuis(2) ;
evol_eq += lapse2*(TrK3*k_dd - 2*contract(k_dd, 1, k_dd.up(0, gam), 0) ) ;
// maxabs(evol_eq, "Evolution equations: ") ;
// evol_eq.trace(gam).spectral_display("evoltrace", 1.e-10);
// maxabs (evol_eq.trace(gam));
// evol_eq.spectral_display("evol", 1.e-10);
}
cout << "================================================================" << endl;
cout << " THE ITERATION HAS NOW CONVERGED" << endl;
cout << "================================================================" << endl;
}
return;
}
}
|