1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
// Header Lorene:
#include "param_elliptic.h"
#include "excised_slice.h"
#include "unites.h"
// Computes the rhs of hyperbolic equation for conformal metric assuming statioarity;
// WARNING; up to now, we are only able to handle void spacetimes.
namespace Lorene {
void Excised_slice::secmembre_kerr(Sym_tensor& source_hh){
// Getting: hij; hatA; lapse; conf_fact; shift;
// hij; aa; nn; ppsi; bb;
using namespace Unites;
const int nz = (*(hij.get_mp().get_mg())).get_nzone();
const Vector& beta = shift;
const Sym_tensor& hh = hij;
const Scalar& psi4 = conf_fact*conf_fact*conf_fact*conf_fact;
Scalar ln_psi = log(conf_fact); ln_psi.std_spectral_base();
const Scalar qq = lapse*conf_fact*conf_fact;
Sym_tensor aa = hatA/(psi4*sqrt(psi4));
aa.std_spectral_base(); //(check...)
const Metric_flat& ff = (hij.get_mp()).flat_met_spher() ;
const Sym_tensor& tgam_uu = ff.con() + hh;
const Metric tgam(tgam_uu);
const Base_vect_spher& otriad = hij.get_mp().get_bvect_spher();
// On met a zero les quantites supposees etre de "matiere"
Sym_tensor strain_tens = hij;
for (int ii=1; ii<=3; ii++)
for(int jj=1; jj<=3; jj++)
{ strain_tens.set(ii,jj).annule_hard();
}
strain_tens.std_spectral_base();
// On met a zero les quantites derivee temporelle
Vector beta_point = shift;
for (int ii=1; ii<=3; ii++)
{ beta_point.set(ii).annule_hard();
}
beta_point.annule_domain(nz-1) ; // Pour faire passer un assert, je ne comprends pas pourquoi...
beta_point.std_spectral_base();
Scalar lapse_point(hij.get_mp());
lapse_point.annule_hard();
lapse_point.annule_domain(nz -1);
lapse_point.std_spectral_base();
Sym_tensor hh_point = hij;
for (int ii=1; ii<=3; ii++)
for(int jj=1; jj<=3; jj++)
{ hh_point.set(ii,jj).annule_hard();
}
hh_point.annule_domain(nz-1);
hh_point.std_spectral_base();
// Note: Il sera probablement necessaire de ne pas mettre a zero hh point;
//Sym_tensor Rrij(map, CON, map.get_bvect_spher());
// Rrij = 0.5*[ contract (( h_iju, 0, h_iju.derive_cov(mets).derive_cov(mets), 3), 0,3) - contract((contract(h_iju.derive_cov(mets),1, h_iju.derive_cov(mets),2)), 1,3)] ;
//==================================
// Source for hij
//==================================
const Sym_tensor& tgam_dd = tgam.cov() ; // {\tilde \gamma}_{ij}
// const Sym_tensor& tgam_uu = tgam().con() ; // {\tilde \gamma}^{ij}
const Tensor_sym& dtgam = tgam_dd.derive_cov(ff) ;// D_k {\tilde \gamma}_{ij} // ff etant la metrique plate
const Tensor_sym& dhh = hh.derive_cov(ff) ; // D_k h^{ij}
const Vector& dln_psi = ln_psi.derive_cov(ff) ; // D_i ln(Psi)
const Vector& tdln_psi_u = ln_psi.derive_con(tgam) ; // tD^i ln(Psi)
const Vector& tdnn_u = lapse.derive_con(tgam) ; // tD^i N
const Vector& dqq = qq.derive_cov(ff) ; // D_i Q
const Scalar& div_beta = beta.divergence(ff) ; // D_k beta^k
Scalar tmp(hij.get_mp()) ;
Sym_tensor sym_tmp(hij.get_mp(), CON, otriad) ;
// Quadratic part of the Ricci tensor of gam_tilde
// ------------------------------------------------
Sym_tensor ricci_star(hij.get_mp(), CON, otriad) ;
ricci_star = contract(hh, 0, 1, dhh.derive_cov(ff), 2, 3) ;
ricci_star.inc_dzpuis() ; // dzpuis : 3 --> 4
// des_profile (ricci_star(1,1), 1, 8, 1,1, "riccistar"); // A enlever
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += dhh(i,k,l) * dhh(j,l,k) ;
}
}
sym_tmp.set(i,j) = tmp ;
}
}
ricci_star -= sym_tmp ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
for (int m=1; m<=3; m++) {
for (int n=1; n<=3; n++) {
tmp += 0.5 * tgam_uu(i,k)* tgam_uu(j,l)
* dhh(m,n,k) * dtgam(m,n,l)
+ tgam_dd(n,l) * dhh(m,n,k)
* (tgam_uu(i,k) * dhh(j,l,m) + tgam_uu(j,k) * dhh(i,l,m) )
- tgam_dd(k,l) *tgam_uu(m,n) * dhh(i,k,m) * dhh(j,l,n) ;
}
}
}
}
sym_tmp.set(i,j) = tmp ;
}
}
ricci_star += sym_tmp ;
ricci_star = 0.5 * ricci_star ;
// Curvature scalar of conformal metric :
// -------------------------------------
Scalar tricci_scal =
0.25 * contract(tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 1), 0, 1 )
- 0.5 * contract(tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 2), 0, 1 ) ;
// Full quadratic part of source for h : S^{ij}
// --------------------------------------------
Sym_tensor ss(hij.get_mp(), CON, otriad) ; // Source secondaire
sym_tmp = lapse * (ricci_star + 8.* tdln_psi_u * tdln_psi_u)
+ 4.*( tdln_psi_u * tdnn_u + tdnn_u * tdln_psi_u )
- 0.3333333333333333 *
( lapse * (tricci_scal + 8.* contract(dln_psi, 0, tdln_psi_u, 0) )
+ 8.* contract(dln_psi, 0, tdnn_u, 0) ) *tgam_uu ;
ss = sym_tmp / psi4 ;
sym_tmp = contract(tgam_uu, 1,
contract(tgam_uu, 1, dqq.derive_cov(ff), 0), 1) ;
sym_tmp.inc_dzpuis() ; // dzpuis : 3 --> 4
// des_profile (sym_tmp(1,1), 1, 8, 1,1, "sym_tmp"); // A enlever
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += ( hh(i,k)*dhh(l,j,k) + hh(k,j)*dhh(i,l,k)
- hh(k,l)*dhh(i,j,k) ) * dqq(l) ;
}
}
sym_tmp.set(i,j) += 0.5 * tmp ;
}
}
tmp = qq.derive_con(tgam).divergence(tgam) ;
tmp.inc_dzpuis() ; // dzpuis : 3 --> 4 // reverifier pourquoi
// des_profile (tmp, 1, 8, 1,1, "tmp"); // A enlever
sym_tmp -= 0.3333333333333333 * tmp *tgam_uu ;
ss -= sym_tmp / (psi4*conf_fact*conf_fact) ; // Voir dans quel sens sont construits psi et psi4 (eviter les multiplications d'erreurs)
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += tgam_dd(k,l) * aa(i,k) * aa(j,l) ;
}
}
sym_tmp.set(i,j) = tmp ;
}
}
tmp = psi4 * strain_tens.trace(tgam) ; // S = S_i^i
ss += (2.*lapse) * ( sym_tmp);// - qpig*( psi4* strain_tens
// - 0.3333333333333333 * tmp * tgam_uu );
Sym_tensor ss2 =2.*lapse*( qpig*(psi4*strain_tens - 0.33333333333333 * tmp * tgam_uu));
ss2.inc_dzpuis(4); // A retirer!
// des_profile (ss2(1,1), 1, 8, 1,1, "ss2"); // A enlever
// cout << zone << endl;
// ss2.annule_domain(nz-1);
ss += -ss2; // ATTENTION!!!! A RETABLIR!!!!
// maxabs(ss, "ss tot") ;
// Source for h^{ij}
// -----------------
Sym_tensor lbh = hh.derive_lie(beta) ;
source_hh =// (lapse*lapse/psi4 - 1.)
// * hh.derive_con(ff).divergence(ff)
+ 2.* hh_point.derive_lie(beta); // - lbh.derive_lie(beta) ; // La double derivee de
// Lie en Beta est retiree (prise en charge dans tensorelliptic.C)
source_hh.inc_dzpuis() ;
// des_profile (source_hh(1,1), 1, 8, 1,1, "sourcehh"); // A enlever
source_hh += 2.* lapse * ss ;
//## Provisory: waiting for the Lie derivative to allow
// derivation with respect to a vector with dzpuis != 0
Vector vtmp = beta_point ;
// vtmp.dec_dzpuis(2) ; // A remettre si jamais beta point est non nul;
sym_tmp = hh.derive_lie(vtmp) ;
sym_tmp.inc_dzpuis(2) ;
// des_profile (sym_tmp(1,1), 1, 8, 1,1, "sym_tmp"); // A enlever
source_hh += sym_tmp
+ 1.3333333333333333 * div_beta* (hh_point - lbh)
+ 2. * (lapse_point - lapse.derive_lie(beta)) * aa ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0. ;
for (int k=1; k<=3; k++) {
tmp += ( hh.derive_con(ff)(k,j,i)
+ hh.derive_con(ff)(i,k,j)
- hh.derive_con(ff)(i,j,k) ) * dqq(k) ;
}
sym_tmp.set(i,j) = tmp ;
}
}
source_hh -= lapse / (psi4*conf_fact*conf_fact) * sym_tmp ;
tmp = beta_point.divergence(ff) - div_beta.derive_lie(beta) ;
tmp.inc_dzpuis() ;
// des_profile (tmp, 1, 8, 1,1, "tmp"); // A enlever
source_hh += 0.6666666666666666*
( tmp - 0.6666666666666666* div_beta * div_beta ) * hh ;
// Term (d/dt - Lie_beta) (L beta)^{ij}--> sym_tmp
// ---------------------------------------
Sym_tensor l_beta = beta.ope_killing_conf(ff) ; // Attention aux headers a inclure
sym_tmp = beta_point.ope_killing_conf(ff) - l_beta.derive_lie(beta) ;
sym_tmp.inc_dzpuis() ;
// Final source:
// ------------
source_hh += 0.6666666666666666* div_beta * l_beta - sym_tmp ;
// Invert it (because the right source is for a Laplace operator, not a Dalembertain operator as it is initially:
source_hh = -source_hh;
// Annulation de la source
// for (int ii=1; ii<=3; ii++)
// for (int jj=1; jj<=3; jj++){
// source_hh.set(ii,jj).annule_hard();
// }
// source_hh.std_spectral_base();
return;
}
}
|