1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Method of class Isol_hor to compute physical parameters of the horizon
*
* (see file isol_hor.h for documentation).
*
*/
/*
* Copyright (c) 2004 Jose Luis Jaramillo
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char phys_param_C[] = "$Header: /cvsroot/Lorene/C++/Source/Isol_hor/phys_param.C,v 1.13 2014/10/13 08:53:01 j_novak Exp $" ;
/*
* $Id: phys_param.C,v 1.13 2014/10/13 08:53:01 j_novak Exp $
* $Log: phys_param.C,v $
* Revision 1.13 2014/10/13 08:53:01 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.12 2014/10/06 15:13:11 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.11 2005/11/02 16:09:44 jl_jaramillo
* changes in boundary_nn_Dir_lapl
*
* Revision 1.10 2005/04/15 11:54:21 jl_jaramillo
* function to compute the expansion of spherical surfaces
*
* Revision 1.9 2005/03/22 13:25:36 f_limousin
* Small changes. The angular velocity and A^{ij} are computed
* with a differnet sign.
*
* Revision 1.8 2005/03/03 10:10:14 f_limousin
* Add the function area_hor().
*
* Revision 1.7 2005/02/07 10:35:42 f_limousin
* Minor changes.
*
* Revision 1.6 2004/12/22 18:16:16 f_limousin
* Mny different changes.
*
* Revision 1.5 2004/11/18 12:30:01 jl_jaramillo
* Definition of b_tilde
*
* Revision 1.4 2004/10/29 15:44:13 jl_jaramillo
* ADM angular momentum added.
*
* Revision 1.3 2004/09/17 13:37:21 f_limousin
* Correction of an error in calculation of the radius
*
* Revision 1.2 2004/09/09 16:54:53 f_limousin
* Add the 2 lines $Id: phys_param.C,v 1.13 2014/10/13 08:53:01 j_novak Exp $Log: for CVS
*
*
*
* $Header: /cvsroot/Lorene/C++/Source/Isol_hor/phys_param.C,v 1.13 2014/10/13 08:53:01 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include <cstdlib>
#include <cassert>
// Lorene headers
#include "isol_hor.h"
#include "metric.h"
#include "evolution.h"
#include "unites.h"
#include "scalar.h"
#include "vector.h"
#include "graphique.h"
#include "utilitaires.h"
namespace Lorene {
const Vector Isol_hor::radial_vect_hor() const {
Vector get_radial_vect (ff.get_mp(), CON, *(ff.get_triad()) ) ;
get_radial_vect.set(1) = gam_uu()(1,1) ;
get_radial_vect.set(2) = gam_uu()(1,2) ;
get_radial_vect.set(3) = gam_uu()(1,3) ;
get_radial_vect = get_radial_vect / sqrt(gam_uu()(1,1)) ;
get_radial_vect.std_spectral_base() ;
return get_radial_vect ;
}
// Think of defining this as a pointer
const Vector Isol_hor::tradial_vect_hor() const {
Vector get_radial_vect (ff.get_mp(), CON, *(ff.get_triad()) ) ;
get_radial_vect.set(1) = (met_gamt.con())(1,1) ;
get_radial_vect.set(2) = (met_gamt.con())(1,2) ;
get_radial_vect.set(3) = (met_gamt.con())(1,3) ;
get_radial_vect = get_radial_vect / sqrt((met_gamt.con())(1,1)) ;
get_radial_vect.std_spectral_base() ;
return get_radial_vect ;
}
const Scalar Isol_hor::b_tilde()const {
Scalar tmp = contract( beta(), 0, met_gamt.radial_vect()
.down(0, met_gamt), 0) ;
return tmp ;
}
const Scalar Isol_hor::darea_hor() const {
Scalar tmp = sqrt( gam_dd()(2,2) * gam_dd()(3,3) - gam_dd()(2,3)
* gam_dd()(2,3)) ;
tmp.std_spectral_base() ;
return tmp ;
}
double Isol_hor::area_hor() const {
Scalar integrand (darea_hor()) ;
integrand.raccord(1) ;
return mp.integrale_surface(integrand, radius + 1e-15) ;
}
double Isol_hor::radius_hor() const {
double resu = area_hor() / (4. * M_PI);
resu = pow(resu, 1./2.) ;
return resu ;
}
double Isol_hor::ang_mom_hor()const {
// Vector \partial_phi
Vector phi (ff.get_mp(), CON, *(ff.get_triad()) ) ;
Scalar tmp (ff.get_mp() ) ;
tmp = 1 ;
tmp.std_spectral_base() ;
tmp.mult_rsint() ;
phi.set(1) = 0. ;
phi.set(2) = 0. ;
phi.set(3) = tmp ;
Scalar k_rphi = contract(contract( radial_vect_hor(), 0, k_dd(), 0), 0,
phi, 0) / (8. * M_PI) ;
Scalar integrand = k_rphi * darea_hor() ; // we correct with the curved
// element of area
double ang_mom = mp.integrale_surface(integrand, radius + 1e-15) ;
return ang_mom ;
}
// Mass (fundamental constants made 1)
double Isol_hor::mass_hor()const {
double rr = radius_hor() ;
double tmp = sqrt( pow( rr, 4) + 4 * pow( ang_mom_hor(), 2) ) / ( 2 * rr ) ;
return tmp ;
}
// Surface gravity
double Isol_hor::kappa_hor() const{
double rr = radius_hor() ;
double jj = ang_mom_hor() ;
double tmp = (pow( rr, 4) - 4 * pow( jj, 2)) / ( 2 * pow( rr, 3)
* sqrt( pow( rr, 4) + 4 * pow( jj, 2) ) ) ;
return tmp ;
}
// Orbital velocity
double Isol_hor::omega_hor()const {
double rr = radius_hor() ;
double jj = ang_mom_hor() ;
double tmp = 2 * jj / ( rr * sqrt( pow( rr, 4) + 4 * pow( jj, 2) ) ) ;
return tmp ;
}
// ADM angular momentum
double Isol_hor::ang_mom_adm()const {
Scalar integrand = (k_dd()(1,3) - gam_dd()(1,3) * trk()) / (8. * M_PI) ;
integrand.mult_rsint() ; // in order to pass from the triad
// component to the coordinate basis
double tmp = mp.integrale_surface_infini(integrand) ;
return tmp ;
}
// Expansion
Scalar Isol_hor::expansion() const {
Scalar expa = contract(gam().radial_vect().derive_cov(gam()), 0,1)
+ contract(contract(k_dd(), 0, gam().radial_vect(), 0),
0, gam().radial_vect(), 0) - trk() ;
return expa ;
}
}
|