1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/*
* Copyright (c) 2000-2004 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char map_af_dalembert_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $" ;
/*
* $Id: map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $
* $Log: map_af_dalembert.C,v $
* Revision 1.18 2014/10/13 08:53:02 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.17 2014/10/06 15:13:11 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.16 2008/08/27 08:55:31 jl_cornou
* Added R_JACO02 case
*
* Revision 1.15 2007/11/06 14:42:20 j_novak
* Copy of field at previous time-steps to local variables to deal with the
* dzpuis.
*
* Revision 1.14 2006/08/31 08:56:37 j_novak
* Added the possibility to have a shift in the quantum number l in the operator.
*
* Revision 1.13 2004/06/08 14:01:27 j_novak
* *** empty log message ***
*
* Revision 1.11 2004/03/04 15:15:48 e_gourgoulhon
* Treatment of case fj in state ETATZERO at the end.
*
* Revision 1.10 2004/03/01 13:30:28 j_novak
* Corrected some errors
*
* Revision 1.9 2004/03/01 09:57:03 j_novak
* the wave equation is solved with Scalars. It now accepts a grid with a
* compactified external domain, which the solver ignores and where it copies
* the values of the field from one time-step to the next.
*
* Revision 1.8 2003/07/22 13:24:48 j_novak
* *** empty log message ***
*
* Revision 1.7 2003/06/20 10:08:12 j_novak
* *** empty log message ***
*
* Revision 1.6 2003/06/20 09:27:10 j_novak
* Modif commentaires.
*
* Revision 1.5 2003/06/19 16:16:38 j_novak
* Parabolic approximation for a non flat dalembert operator
*
* Revision 1.4 2003/06/18 08:45:27 j_novak
* In class Mg3d: added the member get_radial, returning only a radial grid
* For dAlembert solver: the way the coefficients of the operator are defined has been changed.
*
* Revision 1.3 2002/01/03 15:30:28 j_novak
* Some comments modified.
*
* Revision 1.2 2002/01/02 14:07:57 j_novak
* Dalembert equation is now solved in the shells. However, the number of
* points in theta and phi must be the same in each domain. The solver is not
* completely tested (beta version!).
*
* Revision 1.1.1.1 2001/11/20 15:19:27 e_gourgoulhon
* LORENE
*
* Revision 1.7 2001/10/16 10:04:22 novak
* cleaning (no more source terms for enhanced BC)
*
* Revision 1.6 2001/07/19 14:07:15 novak
* tentative for new outgoing boundary condition
*
* Revision 1.5 2000/12/04 15:01:34 novak
* *** empty log message ***
*
* Revision 1.4 2000/12/04 14:20:36 novak
* odd case enabled
*
* Revision 1.3 2000/11/27 14:54:51 novak
* 3D boundary conditions operational
*
* Revision 1.2 2000/10/24 16:18:34 novak
* Outgoing wave boundary conditions and addition of the Tbl coeff
*
* Revision 1.1 2000/10/19 14:17:39 novak
* Initial revision
*
*
* $Header: /cvsroot/Lorene/C++/Source/Map/map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $
*
*/
//Header C++
#include <cmath>
// Header Lorene:
#include "tensor.h"
#include "param.h"
#include "proto.h"
//**************************************************************************
namespace Lorene {
void Map_af::dalembert(Param& par, Scalar& fjp1, const Scalar& fj, const Scalar& fjm1,
const Scalar& source) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(fj.get_etat() != ETATNONDEF) ;
assert(fj.get_mp().get_mg() == mg) ;
assert(fjm1.get_etat() != ETATNONDEF) ;
assert(fjm1.get_mp().get_mg() == mg) ;
assert(fjp1.get_mp().get_mg() == mg) ;
assert(par.get_n_double() == 1) ;
assert(par.get_n_int() >= 1) ;
assert(par.get_n_int_mod() == 1) ;
int& nap = par.get_int_mod() ;
assert ((nap == 0) || (par.get_n_tbl_mod() > 1)) ;
int nz = mg->get_nzone() ;
bool ced = (mg->get_type_r(nz-1) == UNSURR) ;
int nz0 = (ced ? nz - 1 : nz) ;
double dt = par.get_double() ;
Scalar fj_local = fj ;
Scalar fjm1_local = fjm1 ;
if (ced) {
fj_local.annule_domain(nz-1) ;
fjm1_local.annule_domain(nz-1) ;
}
Scalar sigma = 2*fj_local - fjm1_local ; // The source (first part)
// Coefficients
//-------------
Tbl* coeff ;
if (nap == 0) {
coeff = new Tbl(12,nz);
coeff->set_etat_qcq() ;
par.add_tbl_mod(*coeff) ;
}
else
coeff= &par.get_tbl_mod() ;
Tbl a1(nz) ; a1 = 1 ; //Flat dalembertian
Tbl a2(nz) ; a2 = 0 ;
Tbl a3(nz) ; a3 = 0 ;
if (par.get_n_tensor_mod() > 0) { // Metric in front of the dalembertian
assert(par.get_n_tensor_mod() == 1) ;
Scalar* metri = dynamic_cast<Scalar*>(&par.get_tensor_mod()) ;
assert(metri != 0x0) ;
assert (metri->get_etat() == ETATQCQ) ;
const Map_af* tmap ; //Spherically symmetric grid and mapping
if (nap == 0) {
double* bornes = new double[nz+1] ;
bornes[0] = beta[0] ;
for (int i=0; i<nz; i++) bornes[i+1] = alpha[i] + beta[i] ;
tmap = new Map_af(*mg->get_radial() , bornes) ;
par.add_map(*tmap) ;
delete [] bornes ;
}
else {
tmap = dynamic_cast<const Map_af*>(&par.get_map()) ;
assert (tmap != 0x0) ;
}
metri->set_spectral_va().ylm() ;
Scalar xmetr(*tmap) ; // l=0 part of the potential in front of the Laplacian
xmetr.set_etat_qcq() ;
xmetr.std_spectral_base() ;
xmetr.set_spectral_va().set_base_t(T_LEG_PP) ; // Only l=0 matters in any case...
xmetr.set_spectral_va().set_etat_cf_qcq() ;
Mtbl_cf* mt = xmetr.set_spectral_va().c_cf ;
mt->annule_hard() ;
for (int lz=0; lz<nz0; lz++)
for (int ir=0; ir<mg->get_nr(lz); ir++)
mt->set(lz,0,0,ir) = (*metri->get_spectral_va().c_cf)(lz, 0, 0, ir) ; //only l=0
if (mg->get_nt(0) != 1) xmetr = xmetr / sqrt(double(2)) ; //!!!
xmetr.set_spectral_va().ylm_i() ;
xmetr.set_spectral_va().coef_i() ;
const Mtbl& erre = this->r ;
a1.set_etat_qcq() ;
a2.set_etat_qcq() ;
a3.set_etat_qcq() ;
Scalar mime(*this) ;
mime.annule_hard() ;
for (int lz=0; lz<nz0; lz++) {
int nr = mg->get_nr(lz);
double r1 = erre(lz, 0, 0, nr-1) ;
double rm1 = erre(lz, 0, 0, 0) ;
double x1 = xmetr.val_grid_point(lz, 0, 0, nr-1) ;
double xm1 = xmetr.val_grid_point(lz, 0, 0, 0) ;
if (mg->get_type_r(lz) == RARE) { //In the nucleus, no a2*r
a1.set(lz) = xm1 ;
a2.set(lz) = 0 ;
a3.set(lz) = (x1 - a1(lz)) / (r1 * r1);
}
else { // In the shells, general case
int i0 = (nr-1)/2 ;
double r0 = erre(lz, 0, 0, i0) ;
double x0 = xmetr.val_grid_point(lz, 0, 0, i0) ;
double p1 = (r1 - rm1)*(r1 - r0) ;
double pm1 = (r0 - rm1)*(r1 - rm1) ;
double p0 = (r0 - rm1)*(r1 - r0) ;
a1.set(lz) = xm1*r1*r0/pm1 + x1*rm1*r0/p1 - x0*rm1*r1/p0 ;
a2.set(lz) = x0*(rm1 + r1)/p0 - xm1*(r1 + r0)/pm1
- x1*(rm1 + r0)/p1 ;
a3.set(lz) = xm1/pm1+x1/p1-x0/p0 ;
}
for (int k=0; k<mg->get_np(lz)+2; k++)
for (int j=0; j<mg->get_nt(lz); j++)
for (int i=0; i<nr; i++)
mime.set_grid_point(lz, k, j, i) = a1(lz) + erre(lz, 0, 0, i)*
(a2(lz) + erre(lz, 0, 0, i)*a3(lz)) ;
Tbl diff = metri->domain(lz) - mime.domain(lz) ;
double offset = max(diff) ; // Not sure that this is really
a1.set(lz) += offset ; // necessary (supposed to ensure stability).
mime.set_domain(lz) += offset ;
}
Scalar reste = (*metri - mime)*fj_local.laplacian() ;
if (ced) reste.annule_domain(nz-1) ;
sigma += (dt*dt)*(source + reste) ;
if (ced) sigma.annule_domain(nz-1) ;
sigma += (0.5*dt*dt)*mime*fjm1_local.laplacian() ; //Source (2nd part)
}
else {
sigma += (dt*dt) * source ;
if (ced) sigma.annule_domain(nz-1) ;
sigma += (0.5*dt*dt)*fjm1_local.laplacian() ;
if (par.get_n_int() > 1) { //there is a shift in the quantum number l
int dl = -1 ;
int l_min = par.get_int(1) ;
sigma.set_spectral_va().ylm() ;
Scalar tmp = fjm1_local ;
tmp.div_r() ; tmp.div_r() ; // f^(J-1) / r^2
tmp.set_spectral_va().ylm() ;
const Base_val& base = tmp.get_spectral_base() ;
int l_q, m_q, baser ;
for (int lz=0; lz<nz-1; lz++) {
int nt = mg->get_nt(lz) ;
int np = mg->get_np(lz) ;
for (int k=0; k<np+2; k++)
for (int j=0; j<nt; j++) {
base.give_quant_numbers(lz, k, j, m_q, l_q, baser) ;
if ((nullite_plm(j, nt, k, np, base) == 1) && (l_q+dl >= l_min) ) {
for (int i=0; i<mg->get_nr(lz); i++) {
sigma.set_spectral_va().c_cf->set(lz, k, j, i) -=
0.5*dt*dt*dl*(2*l_q + dl +1)
*(*tmp.get_spectral_va().c_cf)(lz, k, j, i) ;
}
}
}
}
if (sigma.get_spectral_va().c != 0x0) {
delete sigma.set_spectral_va().c ;
sigma.set_spectral_va().c = 0x0 ;
}
}
}
if (ced) sigma.annule_domain(nz-1) ;
//--------------------------------------------
// The operator reads
// Id - 0.5dt^2*(a1 + a2 r + a3 r^2)Laplacian
//--------------------------------------------
for (int i=0; i<nz; i++) {
coeff->set(1,i) = a1(i) ;
coeff->set(2,i) = a2(i) ;
coeff->set(3,i) = a3(i) ;
coeff->set(4,i) = 0. ;
coeff->set(5,i) = 0. ;
coeff->set(6,i) = 0. ;
coeff->set(7,i) = 0. ;
coeff->set(8,i) = 0. ;
coeff->set(9,i) = 0. ;
coeff->set(10,i) = beta[i] ;
coeff->set(11,i) = alpha[i] ;
}
// Defining the boundary conditions
// --------------------------------
double R = this->val_r(nz0-1, 1., 0., 0.) ;
int nr = mg->get_nr(nz0-1) ;
int nt = mg->get_nt(nz0-1) ;
int np2 = mg->get_np(nz0-1) + 2;
// For each pair of quantic numbers l, m one the result must satisfy
// bc1 * f_{l,m} (R) + bc2 * f_{l,m}'(R) = tbc3_{l,m}
// Memory is allocated for the parameter (par) at first call
double* bc1 ;
double* bc2 ;
Tbl* tbc3 ;
Tbl* phijm1 = 0x0 ;
Tbl* phij = 0x0 ;
if (nap == 0) {
bc1 = new double ;
bc2 = new double ;
tbc3 = new Tbl(np2,nt) ;
par.add_double_mod(*bc1,1) ;
par.add_double_mod(*bc2,2) ;
par.add_tbl_mod(*tbc3,1) ;
// Hereafter the enhanced outgoing-wave condition needs 2 auxiliary
// functions phij and phijm1 to define the evolution on the boundary
// surface (outer sphere).
if (par.get_int(0) == 2) {
phijm1 = new Tbl(np2,nt) ;
phij = new Tbl(np2,nt) ;
par.add_tbl_mod(*phijm1,2) ;
par.add_tbl_mod(*phij,3) ;
phij->annule_hard() ;
phijm1->annule_hard() ;
}
nap = 1 ;
}
else {
bc1 = &par.get_double_mod(1) ;
bc2 = &par.get_double_mod(2) ;
tbc3 = &par.get_tbl_mod(1) ;
if (par.get_int(0) == 2) {
phijm1 = &par.get_tbl_mod(2) ;
phij = &par.get_tbl_mod(3) ;
}
}
switch (par.get_int(0)) {
case 0: // Homogeneous boundary conditions (f(t,r=R) =0)
*bc1 = 1 ;
*bc2 = 0 ;
*tbc3 = 0 ;
break ;
case 1: { // Outgoing wave condition (f(t,r) = 1/r S(t-r/c))
Valeur bound3(mg) ;
bound3 = R*(4*fj_local.get_spectral_va() - fjm1_local.get_spectral_va()) ;
if (bound3.get_etat() == ETATZERO) {
*bc1 = 3*R + 2*dt ;
*bc2 = 2*R*dt ;
*tbc3 = 0 ;
}
else {
if (nz0>1) bound3.annule(0,nz0-2) ;
bound3.coef() ;
bound3.ylm() ;
*bc1 = 3*R + 2*dt ;
*bc2 = 2*R*dt ;
tbc3->set_etat_qcq() ;
double val ;
for (int k=0; k<np2; k++)
for (int j=0; j<nt; j++) {
val = 0. ;
for (int i=0; i<nr; i++)
val += (*bound3.c_cf)(nz0-1,k,j,i) ;
tbc3->set(k,j) = val ;
}
}
break ;
}
/******************************************************************
* Enhanced outgoing wave condition.
* Time integration of the wave equation on the sphere for the
* auxiliary function phij.
*****************************************************************/
case 2: {
Valeur souphi(mg) ;
souphi = fj_local.get_spectral_va()/R - fj_local.dsdr().get_spectral_va() ;
if (nz0>1) souphi.annule(0,nz0-2) ;
souphi.coef() ;
souphi.ylm() ;
bool zero = (souphi.get_etat() == ETATZERO) ;
if (zero) {
Base_val base_ref(mg->std_base_scal()) ; //## Maybe not good...
base_ref.dsdx() ;
base_ref.ylm() ;
souphi.set_base(base_ref) ;
}
int l_s, m_s, base_r ;
double val ;
int dl = (par.get_n_int() > 1) ? -1 : 0 ;
for (int k=0; k<np2; k++) {
for (int j=0; j<nt; j++) {
donne_lm(nz, nz0-1, j, k, souphi.base, m_s, l_s, base_r) ;
l_s += dl ;
val = 0. ;
if (!zero)
val = -4*dt*dt*l_s*(l_s+1)*souphi.c_cf->val_out_bound_jk(nz0-1, j, k) ;
double multi = 8*R*R + dt*dt*(6+3*l_s*(l_s+1)) + 12*R*dt ;
val = ( 16*R*R*(*phij)(k,j) -
(multi-24*R*dt)*(*phijm1)(k,j)
+ val)/multi ;
phijm1->set(k,j) = (*phij)(k,j) ;
phij->set(k,j) = val ;
}
}
Valeur bound3(mg) ;
*bc1 = 3*R + 2*dt ;
*bc2 = 2*R*dt ;
bound3 = R*(4*fj_local.get_spectral_va() - fjm1_local.get_spectral_va()) ;
if (bound3.get_etat() == ETATZERO) *tbc3 = 0 ;
else {
if (nz0 > 1) bound3.annule(0,nz0-2) ;
bound3.coef() ;
bound3.ylm() ;
tbc3->set_etat_qcq() ;
for (int k=0; k<np2; k++)
for (int j=0; j<nt; j++) {
val = 0. ;
for (int i=0; i<nr; i++)
val += (*bound3.c_cf)(nz0-1,k,j,i) ;
tbc3->set(k,j) = val + 2*R*dt*(*phij)(k,j);
}
}
break ;
}
default:
cout << "ERROR: Map_af::dalembert" << endl ;
cout << "The boundary condition par.get_int(0) = "<< par.get_int(0)
<< " is unknown!" << endl ;
abort() ;
}
if (sigma.get_etat() == ETATZERO) {
fjp1.set_etat_zero() ;
return ;
}
// Spherical harmonic expansion of the source
// ------------------------------------------
Valeur& sourva = sigma.set_spectral_va() ;
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
sourva.ylm() ; // spherical harmonic transforms
// Final result returned as a Scalar
// ------------------------------
fjp1.set_etat_zero() ; // to call Scalar::del_t().
fjp1.set_etat_qcq() ;
// Call to the Mtbl_cf version
// ---------------------------
fjp1.set_spectral_va() = sol_dalembert(par, *this, *(sourva.c_cf) ) ;
fjp1.set_spectral_va().ylm_i() ; // Back to standard basis.
if (ced) {
if (fj.get_etat() == ETATZERO) {
fjp1.annule_domain(nz-1) ;
}
else {
fjp1.set_domain(nz-1) = fj.domain(nz-1) ;
}
fjp1.set_dzpuis(fj.get_dzpuis()) ;
}
}
}
|