File: map_af_dalembert.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (488 lines) | stat: -rw-r--r-- 15,388 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
 *   Copyright (c) 2000-2004 Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char map_af_dalembert_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $" ;

/*
 * $Id: map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $
 * $Log: map_af_dalembert.C,v $
 * Revision 1.18  2014/10/13 08:53:02  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.17  2014/10/06 15:13:11  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.16  2008/08/27 08:55:31  jl_cornou
 * Added R_JACO02 case
 *
 * Revision 1.15  2007/11/06 14:42:20  j_novak
 * Copy of field at previous time-steps to local variables to deal with the
 * dzpuis.
 *
 * Revision 1.14  2006/08/31 08:56:37  j_novak
 * Added the possibility to have a shift in the quantum number l in the operator.
 *
 * Revision 1.13  2004/06/08 14:01:27  j_novak
 * *** empty log message ***
 *
 * Revision 1.11  2004/03/04 15:15:48  e_gourgoulhon
 * Treatment of case fj in state ETATZERO at the end.
 *
 * Revision 1.10  2004/03/01 13:30:28  j_novak
 * Corrected some errors
 *
 * Revision 1.9  2004/03/01 09:57:03  j_novak
 * the wave equation is solved with Scalars. It now accepts a grid with a
 * compactified external domain, which the solver ignores and where it copies
 * the values of the field from one time-step to the next.
 *
 * Revision 1.8  2003/07/22 13:24:48  j_novak
 * *** empty log message ***
 *
 * Revision 1.7  2003/06/20 10:08:12  j_novak
 * *** empty log message ***
 *
 * Revision 1.6  2003/06/20 09:27:10  j_novak
 * Modif commentaires.
 *
 * Revision 1.5  2003/06/19 16:16:38  j_novak
 * Parabolic approximation for a non flat dalembert operator
 *
 * Revision 1.4  2003/06/18 08:45:27  j_novak
 * In class Mg3d: added the member get_radial, returning only a radial grid
 * For dAlembert solver: the way the coefficients of the operator are defined has been changed.
 *
 * Revision 1.3  2002/01/03 15:30:28  j_novak
 * Some comments modified.
 *
 * Revision 1.2  2002/01/02 14:07:57  j_novak
 * Dalembert equation is now solved in the shells. However, the number of
 * points in theta and phi must be the same in each domain. The solver is not
 * completely tested (beta version!).
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 1.7  2001/10/16  10:04:22  novak
 * cleaning (no more source terms for enhanced BC)
 *
 * Revision 1.6  2001/07/19 14:07:15  novak
 * tentative for new outgoing boundary condition
 *
 * Revision 1.5  2000/12/04 15:01:34  novak
 * *** empty log message ***
 *
 * Revision 1.4  2000/12/04 14:20:36  novak
 * odd case enabled
 *
 * Revision 1.3  2000/11/27 14:54:51  novak
 * 3D boundary conditions operational
 *
 * Revision 1.2  2000/10/24 16:18:34  novak
 * Outgoing wave boundary conditions and addition of the Tbl coeff
 *
 * Revision 1.1  2000/10/19 14:17:39  novak
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Map/map_af_dalembert.C,v 1.18 2014/10/13 08:53:02 j_novak Exp $
 *
 */
//Header C++
#include <cmath>

// Header Lorene:
#include "tensor.h"
#include "param.h"
#include "proto.h"

//**************************************************************************

namespace Lorene {

void Map_af::dalembert(Param& par, Scalar& fjp1, const Scalar& fj, const Scalar& fjm1,
		       const Scalar& source) const {


    assert(source.get_etat() != ETATNONDEF) ; 
    assert(source.get_mp().get_mg() == mg) ; 
    assert(fj.get_etat() != ETATNONDEF) ; 
    assert(fj.get_mp().get_mg() == mg) ; 
    assert(fjm1.get_etat() != ETATNONDEF) ; 
    assert(fjm1.get_mp().get_mg() == mg) ; 
    assert(fjp1.get_mp().get_mg() == mg) ;

    assert(par.get_n_double() == 1) ;
    assert(par.get_n_int() >= 1) ;
    assert(par.get_n_int_mod() == 1) ;
    int& nap = par.get_int_mod() ;
    assert ((nap == 0) || (par.get_n_tbl_mod() > 1)) ;

    int nz = mg->get_nzone() ;
    bool ced = (mg->get_type_r(nz-1) == UNSURR) ;
    int nz0 = (ced ? nz - 1 : nz) ;
    double dt = par.get_double() ;

    Scalar fj_local = fj ;
    Scalar fjm1_local = fjm1 ;
    if (ced) {
	fj_local.annule_domain(nz-1) ;
	fjm1_local.annule_domain(nz-1) ;
    }
    Scalar sigma = 2*fj_local - fjm1_local ; // The source (first part)     

    // Coefficients
    //-------------
    
    Tbl* coeff ;
    if (nap == 0) {
      coeff = new Tbl(12,nz);
      coeff->set_etat_qcq() ;
      par.add_tbl_mod(*coeff) ;
    }
    else 
      coeff= &par.get_tbl_mod() ;
    Tbl a1(nz) ; a1 = 1 ; //Flat dalembertian
    Tbl a2(nz) ; a2 = 0 ;
    Tbl a3(nz) ; a3 = 0 ;

    if (par.get_n_tensor_mod() > 0) { // Metric in front of the dalembertian
      assert(par.get_n_tensor_mod() == 1) ;
      Scalar* metri = dynamic_cast<Scalar*>(&par.get_tensor_mod()) ;
      assert(metri != 0x0) ;
      assert (metri->get_etat() == ETATQCQ) ;

      const Map_af* tmap ; //Spherically symmetric grid and mapping
      if (nap == 0) {
	double* bornes = new double[nz+1] ;
	bornes[0] = beta[0] ;
	for (int i=0; i<nz; i++) bornes[i+1] = alpha[i] + beta[i] ;
	tmap = new Map_af(*mg->get_radial() , bornes) ;
	par.add_map(*tmap) ;
	delete [] bornes ;
      }
      else {
	tmap = dynamic_cast<const Map_af*>(&par.get_map()) ;
	assert (tmap != 0x0) ;
      }
      metri->set_spectral_va().ylm() ;

      Scalar xmetr(*tmap) ; // l=0 part of the potential in front of the Laplacian
      xmetr.set_etat_qcq() ;
      xmetr.std_spectral_base() ;
      xmetr.set_spectral_va().set_base_t(T_LEG_PP) ; // Only l=0 matters in any case...
      xmetr.set_spectral_va().set_etat_cf_qcq() ;
      Mtbl_cf* mt = xmetr.set_spectral_va().c_cf ; 
      mt->annule_hard() ;
      for (int lz=0; lz<nz0; lz++) 
	for (int ir=0; ir<mg->get_nr(lz); ir++) 
	  mt->set(lz,0,0,ir) = (*metri->get_spectral_va().c_cf)(lz, 0, 0, ir) ; //only l=0
	
      if (mg->get_nt(0) != 1) xmetr = xmetr / sqrt(double(2)) ; //!!!
      xmetr.set_spectral_va().ylm_i() ;
      xmetr.set_spectral_va().coef_i() ;
      const Mtbl& erre = this->r ;

      a1.set_etat_qcq() ;
      a2.set_etat_qcq() ;
      a3.set_etat_qcq() ;
      Scalar mime(*this) ;
      mime.annule_hard() ;
      for (int lz=0; lz<nz0; lz++) {
	int nr = mg->get_nr(lz);
	double r1 = erre(lz, 0, 0, nr-1) ;
	double rm1 = erre(lz, 0, 0, 0) ;
	double x1 = xmetr.val_grid_point(lz, 0, 0, nr-1) ;
	double xm1 = xmetr.val_grid_point(lz, 0, 0, 0) ;
	
	if (mg->get_type_r(lz) == RARE) { //In the nucleus, no a2*r
      	  a1.set(lz) = xm1 ;
    	  a2.set(lz) = 0 ;
      	  a3.set(lz) = (x1 - a1(lz)) / (r1 * r1);
	}
	else { // In the shells, general case
	  int i0 = (nr-1)/2 ;
	  double r0 = erre(lz, 0, 0, i0) ;
	  double x0 = xmetr.val_grid_point(lz, 0, 0, i0) ;
	  double p1 = (r1 - rm1)*(r1 - r0) ;
	  double pm1 = (r0 - rm1)*(r1 - rm1) ;
	  double p0 = (r0 - rm1)*(r1 - r0) ;
	  a1.set(lz) = xm1*r1*r0/pm1 + x1*rm1*r0/p1 - x0*rm1*r1/p0 ;
	  a2.set(lz) = x0*(rm1 + r1)/p0 - xm1*(r1 + r0)/pm1 
	    - x1*(rm1 + r0)/p1 ;
	  a3.set(lz) = xm1/pm1+x1/p1-x0/p0 ;
	}

	for (int k=0; k<mg->get_np(lz)+2; k++) 
	  for (int j=0; j<mg->get_nt(lz); j++) 
	    for (int i=0; i<nr; i++)
	      mime.set_grid_point(lz, k, j, i) = a1(lz) + erre(lz, 0, 0, i)*
		(a2(lz) + erre(lz, 0, 0, i)*a3(lz)) ;

	Tbl diff = metri->domain(lz) - mime.domain(lz) ;
	double offset = max(diff) ; // Not sure that this is really 
  	a1.set(lz) += offset ;  // necessary (supposed to ensure stability).
  	mime.set_domain(lz) += offset ;
      }

      Scalar reste = (*metri - mime)*fj_local.laplacian() ;
      if (ced) reste.annule_domain(nz-1) ;
      sigma += (dt*dt)*(source + reste) ;
      if (ced) sigma.annule_domain(nz-1) ;
      sigma +=  (0.5*dt*dt)*mime*fjm1_local.laplacian() ; //Source (2nd part)
    }
    else {
      sigma += (dt*dt) * source ;
      if (ced) sigma.annule_domain(nz-1) ;
      sigma += (0.5*dt*dt)*fjm1_local.laplacian() ;
      if (par.get_n_int() > 1) { //there is a shift in the quantum number l
	  int dl = -1 ;
	  int l_min = par.get_int(1) ;
	  sigma.set_spectral_va().ylm() ;      
	  Scalar tmp = fjm1_local ;
	  tmp.div_r() ; tmp.div_r() ; // f^(J-1) / r^2
	  tmp.set_spectral_va().ylm() ;
	  const Base_val& base = tmp.get_spectral_base() ;
	  int l_q, m_q, baser ;
	
	  for (int lz=0; lz<nz-1; lz++) {
	      int nt = mg->get_nt(lz) ;
	      int np = mg->get_np(lz) ;
	      for (int k=0; k<np+2; k++) 
		  for (int j=0; j<nt; j++) {
		      base.give_quant_numbers(lz, k, j, m_q, l_q, baser) ;
		      if ((nullite_plm(j, nt, k, np, base) == 1) && (l_q+dl >= l_min) ) {
			  for (int i=0; i<mg->get_nr(lz); i++) {
			      sigma.set_spectral_va().c_cf->set(lz, k, j, i) -=
			      0.5*dt*dt*dl*(2*l_q + dl +1)
				  *(*tmp.get_spectral_va().c_cf)(lz, k, j, i) ;
			  }
		      }
		  }
	  }
	  if (sigma.get_spectral_va().c != 0x0) {
	      delete sigma.set_spectral_va().c ;
	      sigma.set_spectral_va().c = 0x0 ;
	  }
      }
    }
    if (ced) sigma.annule_domain(nz-1) ;

    //--------------------------------------------
    // The operator reads
    // Id - 0.5dt^2*(a1 + a2 r + a3 r^2)Laplacian
    //--------------------------------------------
    for (int i=0; i<nz; i++) {
	coeff->set(1,i) = a1(i) ; 
	coeff->set(2,i) = a2(i) ;
	coeff->set(3,i) = a3(i) ;
	coeff->set(4,i) = 0. ;
	coeff->set(5,i) = 0. ;
	coeff->set(6,i) = 0. ;
	coeff->set(7,i) = 0. ;
	coeff->set(8,i) = 0. ;
	coeff->set(9,i) = 0. ; 
	coeff->set(10,i) = beta[i] ;
	coeff->set(11,i) = alpha[i] ;
    }

    // Defining the boundary conditions
    // --------------------------------
    double R = this->val_r(nz0-1, 1., 0., 0.) ;
    int nr = mg->get_nr(nz0-1) ;
    int nt = mg->get_nt(nz0-1) ;
    int np2 = mg->get_np(nz0-1) + 2;

    // For each pair of quantic numbers l, m one the result must satisfy
    // bc1 * f_{l,m} (R) + bc2 * f_{l,m}'(R) = tbc3_{l,m}
    // Memory is allocated for the parameter (par) at first call
    double* bc1 ;
    double* bc2 ;
    Tbl* tbc3 ;
    Tbl* phijm1 = 0x0 ;
    Tbl* phij = 0x0 ;
    if (nap == 0) { 
      bc1 = new double ;
      bc2 = new double ;
      tbc3 = new Tbl(np2,nt) ;
      par.add_double_mod(*bc1,1) ;
      par.add_double_mod(*bc2,2) ;
      par.add_tbl_mod(*tbc3,1) ;
      // Hereafter the enhanced outgoing-wave condition needs 2 auxiliary
      // functions phij and phijm1 to define the evolution on the boundary
      // surface (outer sphere).
      if (par.get_int(0) == 2) {
	phijm1 = new Tbl(np2,nt) ;
	phij = new Tbl(np2,nt) ;
	par.add_tbl_mod(*phijm1,2) ;
	par.add_tbl_mod(*phij,3) ;
	phij->annule_hard() ;
	phijm1->annule_hard() ;
      }
      nap = 1 ;
    }
    else {
      bc1 = &par.get_double_mod(1) ;
      bc2 = &par.get_double_mod(2) ;
      tbc3 = &par.get_tbl_mod(1) ;
      if (par.get_int(0) == 2) {
	phijm1 = &par.get_tbl_mod(2) ;
	phij = &par.get_tbl_mod(3) ;
      }
    }
    switch (par.get_int(0)) {
    case 0:   // Homogeneous boundary conditions (f(t,r=R) =0)
      *bc1 = 1 ;
      *bc2 = 0 ;
      
      *tbc3 = 0 ;
      
      break ;
    case 1:  { // Outgoing wave condition (f(t,r) = 1/r S(t-r/c))
      Valeur bound3(mg) ;
      bound3 = R*(4*fj_local.get_spectral_va() - fjm1_local.get_spectral_va()) ;
      if (bound3.get_etat() == ETATZERO) {
	*bc1 = 3*R + 2*dt ;
	*bc2 = 2*R*dt ;
	*tbc3 = 0 ;
      }
      else {
	if (nz0>1) bound3.annule(0,nz0-2) ;

	bound3.coef() ;
	bound3.ylm() ;
	
	*bc1 = 3*R + 2*dt ;
	*bc2 = 2*R*dt ;
	
	tbc3->set_etat_qcq() ;
	double val ;
	for (int k=0; k<np2; k++)
	  for (int j=0; j<nt; j++) {
	    val = 0. ;
	    for (int i=0; i<nr; i++) 
	      val += (*bound3.c_cf)(nz0-1,k,j,i) ;
	    tbc3->set(k,j) = val ;
	  }
      }
      break ;
    }
    /******************************************************************
     * Enhanced outgoing wave condition. 
     * Time integration of the wave equation on the sphere for the 
     * auxiliary function phij.
     *****************************************************************/
     case 2: { 
      Valeur souphi(mg) ;
      souphi = fj_local.get_spectral_va()/R - fj_local.dsdr().get_spectral_va() ;
      if (nz0>1) souphi.annule(0,nz0-2) ;
      souphi.coef() ;
      souphi.ylm() ;

      bool zero = (souphi.get_etat() == ETATZERO) ;
      if (zero) {
	Base_val base_ref(mg->std_base_scal()) ; //## Maybe not good...
	base_ref.dsdx() ;
	base_ref.ylm() ;
	souphi.set_base(base_ref) ;
      }

      int l_s, m_s, base_r ;
      double val ;
      int dl = (par.get_n_int() > 1) ? -1 : 0 ;
      for (int k=0; k<np2; k++) {
	for (int j=0; j<nt; j++) {
	  donne_lm(nz, nz0-1, j, k, souphi.base, m_s, l_s, base_r) ;
	  l_s += dl ;
	  val = 0. ;
	  if (!zero)
	      val = -4*dt*dt*l_s*(l_s+1)*souphi.c_cf->val_out_bound_jk(nz0-1, j, k) ;
	  double multi = 8*R*R + dt*dt*(6+3*l_s*(l_s+1)) + 12*R*dt ;
	  val = ( 16*R*R*(*phij)(k,j) -
		  (multi-24*R*dt)*(*phijm1)(k,j) 
		  + val)/multi ;
	  phijm1->set(k,j) = (*phij)(k,j) ; 
	  phij->set(k,j) = val ;
  	}
      }
      Valeur bound3(mg) ;
      *bc1 = 3*R + 2*dt ;
      *bc2 = 2*R*dt ;
      bound3 = R*(4*fj_local.get_spectral_va() - fjm1_local.get_spectral_va()) ;
      if (bound3.get_etat() == ETATZERO) *tbc3 = 0 ;
      else {
	if (nz0 > 1) bound3.annule(0,nz0-2) ;
	bound3.coef() ;
	bound3.ylm() ;
	tbc3->set_etat_qcq() ;
	for (int k=0; k<np2; k++)
	  for (int j=0; j<nt; j++) {
	    val = 0. ;
	    for (int i=0; i<nr; i++) 
	      val += (*bound3.c_cf)(nz0-1,k,j,i) ;
	    tbc3->set(k,j) = val + 2*R*dt*(*phij)(k,j);
	  }
      }
      break ;
    }
    default:
      cout << "ERROR: Map_af::dalembert" << endl ;
      cout << "The boundary condition par.get_int(0) = "<< par.get_int(0) 
	   << " is unknown!" << endl ;
      abort() ;
    }

    if (sigma.get_etat() == ETATZERO) {
      fjp1.set_etat_zero() ;
      return ;  
    }

    // Spherical harmonic expansion of the source
    // ------------------------------------------    
    Valeur& sourva = sigma.set_spectral_va() ; 

    // Spectral coefficients of the source
    assert(sourva.get_etat() == ETATQCQ) ; 
    sourva.ylm() ;			// spherical harmonic transforms 

    // Final result returned as a Scalar
    // ------------------------------
    fjp1.set_etat_zero() ;  // to call Scalar::del_t().
    fjp1.set_etat_qcq() ; 
    
    // Call to the Mtbl_cf version
    // ---------------------------
    fjp1.set_spectral_va() = sol_dalembert(par, *this, *(sourva.c_cf) ) ;
    fjp1.set_spectral_va().ylm_i() ; // Back to standard basis.	 

    if (ced) {
        if (fj.get_etat() == ETATZERO) {
            fjp1.annule_domain(nz-1) ; 
        }
        else {
            fjp1.set_domain(nz-1) = fj.domain(nz-1) ;
        }
	fjp1.set_dzpuis(fj.get_dzpuis()) ;
    }
}

}