File: map_af_integ.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (347 lines) | stat: -rw-r--r-- 9,286 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 *  Method of the class Map_af for computing the integral of a Cmp over
 *  all space.
 */

/*
 *   Copyright (c) 1999-2003 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char map_af_integ_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_integ.C,v 1.9 2014/10/13 08:53:02 j_novak Exp $" ;

/*
 * $Id: map_af_integ.C,v 1.9 2014/10/13 08:53:02 j_novak Exp $
 * $Log: map_af_integ.C,v $
 * Revision 1.9  2014/10/13 08:53:02  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.8  2014/10/06 15:13:12  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.7  2009/10/08 16:20:47  j_novak
 * Addition of new bases T_COS and T_SIN.
 *
 * Revision 1.6  2008/08/27 08:48:05  jl_cornou
 * Added R_JACO02 case
 *
 * Revision 1.5  2007/10/05 15:56:19  j_novak
 * Addition of new bases for the non-symmetric case in theta.
 *
 * Revision 1.4  2003/12/19 16:21:43  j_novak
 * Shadow hunt
 *
 * Revision 1.3  2003/10/19 19:58:15  e_gourgoulhon
 * Access to Base_val::b now via Base_val::get_b().
 *
 * Revision 1.2  2003/10/15 10:35:27  e_gourgoulhon
 * Changed cast (double *) into static_cast<double*>.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 1.2  2000/01/28  16:09:37  eric
 * Remplacement du ci.get_dzpuis() == 4 par ci.check_dzpuis(4).
 *
 * Revision 1.1  1999/12/09  10:45:43  eric
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Map/map_af_integ.C,v 1.9 2014/10/13 08:53:02 j_novak Exp $
 *
 */

// Headers C
#include <cstdlib>
#include <cmath>


// Headers Lorene
#include "map.h"
#include "cmp.h"

namespace Lorene {
Tbl* Map_af::integrale(const Cmp& ci) const {

    static double* cx_tcp = 0 ;	    // Coefficients theta, dev. en cos(2l theta)
    static double* cx_rrp = 0 ;	    // Coefficients r rare, dev. en T_{2i}
    static double* cx_rf_x2 = 0 ;	// Coefficients r fin, int. en r^2
    static double* cx_rf_x = 0 ;	// Coefficients r fin, int en r
    static double* cx_rf = 0 ;		// Coefficients r fin, int en cst.

    static int nt_cp_pre = 0 ;
    static int nr_p_pre = 0 ;
    static int nr_f_pre = 0 ;

    assert(ci.get_etat() != ETATNONDEF) ; 

    int nz = mg->get_nzone() ; 
    
    Tbl* resu = new Tbl(nz) ;
    
    if (ci.get_etat() == ETATZERO) {
	resu->annule_hard() ; 
	return resu ; 
    }
    
    assert( ci.get_etat() == ETATQCQ ) ; 
    
    (ci.va).coef() ;	// The spectral coefficients are required
    
    const Mtbl_cf* p_mti = (ci.va).c_cf ; 

    assert( ci.check_dzpuis(4) ) ;	    // dzpuis must be equal to 4  
    
    assert(p_mti->get_etat() == ETATQCQ) ; 

    resu->set_etat_qcq() ;  // Allocates the memory for the array of double

    // Loop of the various domains
    // ---------------------------
    for (int l=0 ; l<nz ; l++) {
	
	const Tbl* p_tbi = p_mti->t[l] ; 
	
	if ( p_tbi->get_etat() == ETATZERO ) {
	    resu->t[l] = 0 ; 
	}
	else {	    // Case where the computation must be done
	
	    assert( p_tbi->get_etat() == ETATQCQ ) ; 
	
	    int nt = mg->get_nt(l) ; 
	    int nr = mg->get_nr(l) ;
	    
	    int base = (p_mti->base).get_b(l) ; 
	    int base_r = base & MSQ_R ;
	    int base_t = base & MSQ_T ;
	    int base_p = base & MSQ_P ;
	    
	    // ----------------------------------
	    // Integration on theta -> array in r
	    // ----------------------------------

	    double* s_tr = new double[nr] ;	// Partial integral on theta 
	    double* x_spec = p_tbi->t ;	// Pointer on the spectral coefficients
	    
	    switch (base_t) {
	    
		case T_COS_P: case T_COSSIN_CP: {
		    if (nt > nt_cp_pre) {  // Initialization of factors for summation
			nt_cp_pre = nt ;
			cx_tcp 
			    = static_cast<double*>(realloc(cx_tcp, nt*sizeof(double))) ;
			for (int j=0 ; j<nt ; j++) {
			    cx_tcp[j] = 2./(1. - 4.*j*j) ;  // Factor 2 symmetry
			}
		    }
		    
		    // Summation : 
		    for (int i=0 ; i<nr ; i++) s_tr[i] = 0 ;
		    for (int j=0 ; j<nt ; j++) {
			for (int i=0 ; i<nr ; i++) {
			    s_tr[i] += cx_tcp[j] * x_spec[i] ;
			}
			x_spec += nr ;	// Next theta
		    }
		    break ;
		}
		case T_COSSIN_C: case T_COS: {
		    // Summation : 
		    for (int i=0 ; i<nr ; i++) s_tr[i] = 0 ;
		    for (int j=0 ; j<nt ; j++) {
			if ((j%2)==0)
			    for (int i=0 ; i<nr ; i++) {
				s_tr[i] += (2. / (1.-j*j)) * x_spec[i] ;
			    }
			x_spec += nr ;	// Next theta
		    }
		    break ;		    
		}
		default: {
		    cout << "Map_af::integrale: unknown theta basis ! " << endl ;
		    abort () ;
		    break ;
		}
		    
	    }	// End of the various cases on base_t

	    // ----------------
	    // Integration on r
	    // ----------------

	    double som = 0 ;
	    double som_x2 = 0;
	    double som_x = 0 ;
	    double som_c = 0 ;
	
	    switch(base_r) {
	    case R_CHEBP: case R_CHEBPIM_P: case R_CHEBPI_P :{
		assert(beta[l] == 0) ;
		if (nr > nr_p_pre) {  // Initialization of factors for summation
		    nr_p_pre = nr ;
		    cx_rrp = static_cast<double*>(realloc(cx_rrp, nr*sizeof(double))) ;
		    for (int i=0 ; i<nr ; i++) {
			cx_rrp[i] = (3. - 4.*i*i) / 
				    (9. - 40. * i*i + 16. * i*i*i*i) ;
		    }
		}
	    
		for (int i=0 ; i<nr ; i++) {
		    som += cx_rrp[i] * s_tr[i] ;
		}
		double rmax = alpha[l] ;
		som *= rmax*rmax*rmax ;
		break ;
	    }
	    
	    case R_CHEB: {
		if (nr > nr_f_pre) {  // Initialization of factors for summation
		    nr_f_pre = nr ;
		    cx_rf_x2 = static_cast<double*>(realloc(cx_rf_x2, nr*sizeof(double))) ;
		    cx_rf_x  = static_cast<double*>(realloc(cx_rf_x, nr*sizeof(double))) ;
		    cx_rf    = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
		    for (int i=0 ; i<nr ; i +=2 ) {
			cx_rf_x2[i] = 2.*(3. - i*i)/(9. - 10. * i*i + i*i*i*i) ;
			cx_rf_x[i] = 0 ;
			cx_rf[i] = 2./(1. - i*i) ;
		    }
		    for (int i=1 ; i<nr ; i +=2 ) {
			cx_rf_x2[i] = 0 ;
			cx_rf_x[i] = 2./(4. - i*i) ;
			cx_rf[i] = 0 ;
		    }
		}
	    
		for (int i=0 ; i<nr ; i +=2 ) {
		    som_x2 += cx_rf_x2[i] * s_tr[i] ;
		}
		for (int i=1 ; i<nr ; i +=2 ) {
		    som_x += cx_rf_x[i] * s_tr[i] ;
		}
		for (int i=0 ; i<nr ; i +=2 ) {
		    som_c += cx_rf[i] * s_tr[i] ;
		}
		double a = alpha[l] ;
		double b = beta[l] ;
		som = a*a*a * som_x2 + 2.*a*a*b * som_x + a*b*b * som_c ;
		break ;
	    }

	    case R_JACO02: {
		if (nr > nr_f_pre) {  // Initialization of factors for summation
		    nr_f_pre = nr ;
		    cx_rf_x2 = static_cast<double*>(realloc(cx_rf_x2, nr*sizeof(double))) ;
		    cx_rf_x  = static_cast<double*>(realloc(cx_rf_x, nr*sizeof(double))) ;
		    cx_rf    = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
		    double signe = 1 ;
		    for (int i=0 ; i<nr ; i +=1 ) {
			cx_rf_x2[i] = 0 ;
			cx_rf_x[i] = 2*signe/double(i+1)/double(i+2);
			cx_rf[i] = 2*signe ;
			signe = - signe ;
		    }
			cx_rf_x2[0] = double(8)/double(3) ;
		}
	    
		for (int i=0 ; i<nr ; i +=1 ) {
		    som_x2 += cx_rf_x2[i] * s_tr[i] ;
		}
		for (int i=1 ; i<nr ; i +=1 ) {
		    som_x += cx_rf_x[i] * s_tr[i] ;
		}
		for (int i=0 ; i<nr ; i +=1 ) {
		    som_c += cx_rf[i] * s_tr[i] ;
		}
		double a = alpha[l] ;
		double b = beta[l] ;
		assert(b == a) ;
		som = a*a*a * som_x2 + 2.*a*a*(b-a) * som_x + a*(b-a)*(b-a) * som_c ;
		break ;
	    }
	    
	    case R_CHEBU: {
		assert(beta[l] == - alpha[l]) ;
		if (nr > nr_f_pre) {  // Initialization of factors for summation
		    nr_f_pre = nr ;
		    cx_rf    = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
		    for (int i=0 ; i<nr ; i +=2 ) {
			cx_rf[i] = 2./(1. - i*i) ;
		    }
		    for (int i=1 ; i<nr ; i +=2 ) {
			cx_rf[i] = 0 ;
		    }
		}
	    
		for (int i=0 ; i<nr ; i +=2 ) {
		    som_c += cx_rf[i] * s_tr[i] ;
		}
		som = - alpha[l] * som_c ;
		break ;
	    }


	    default: {
		cout << "Map_af::integrale: unknown r basis ! " << endl ;
		abort () ;
		break ;
	    }
	    
	    }	// End of the various cases on base_r
	    
	    // ------------------
	    // Integration on phi
	    // ------------------

	    switch (base_p) {

	    case P_COSSIN: {
		som *= 2. * M_PI ;
		break ;
	    }
	    
	    case P_COSSIN_P: {
		som *= 2. * M_PI ;
		break ;
	    }
	    
	    default: {
		cout << "Map_af::integrale: unknown phi basis ! " << endl ;
		abort () ;
		break ;
	    }
	    
	    }	// End of the various cases on base_p

	    // Final result for this domain:
	    // ----------------------------
	       
	    resu->t[l] = som ; 
	    delete [] s_tr ;

	}   // End of the case where the computation must be done
	
	
    }	// End of the loop onto the domains
        
    return resu ;
    
}
}