1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/*
* Method of the class Map_af for the resolution of the 2-D Poisson
* equation.
*
* (see file map.h for documentation).
*/
/*
* Copyright (c) 2000-2001 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char map_af_poisson2d_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_poisson2d.C,v 1.6 2014/10/13 08:53:02 j_novak Exp $" ;
/*
* $Id: map_af_poisson2d.C,v 1.6 2014/10/13 08:53:02 j_novak Exp $
* $Log: map_af_poisson2d.C,v $
* Revision 1.6 2014/10/13 08:53:02 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2012/09/04 14:53:28 j_novak
* Replacement of the FORTRAN version of huntm by a C one.
*
* Revision 1.4 2012/08/12 17:48:36 p_cerda
* Magnetstar: New classes for magnetstar. Allowing for non-equatorial symmetry in Etoile et al. Adding B_phi in Et_rot_mag.
*
* Revision 1.3 2002/09/09 13:54:20 e_gourgoulhon
*
* Change of name of the Fortran subroutines
* poisson2d -> poiss2d
* poisson2di -> poiss2di
* to avoid any clash with Map::poisson2d and Map::poisson2di
*
* Revision 1.2 2002/09/09 13:00:39 e_gourgoulhon
* Modification of declaration of Fortran 77 prototypes for
* a better portability (in particular on IBM AIX systems):
* All Fortran subroutine names are now written F77_* and are
* defined in the new file C++/Include/proto_f77.h.
*
* Revision 1.1.1.1 2001/11/20 15:19:27 e_gourgoulhon
* LORENE
*
* Revision 2.1 2000/10/11 15:15:26 eric
* 1ere version operationnelle.
*
* Revision 2.0 2000/10/09 13:47:10 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Map/map_af_poisson2d.C,v 1.6 2014/10/13 08:53:02 j_novak Exp $
*
*/
// Header Lorene:
#include "map.h"
#include "cmp.h"
#include "param.h"
#include "proto_f77.h"
//*****************************************************************************
namespace Lorene {
void Map_af::poisson2d(const Cmp& source_mat, const Cmp& source_quad,
Param& par, Cmp& uu) const {
assert(source_mat.get_etat() != ETATNONDEF) ;
assert(source_quad.get_etat() != ETATNONDEF) ;
assert(source_mat.get_mp()->get_mg() == mg) ;
assert(source_quad.get_mp()->get_mg() == mg) ;
assert(uu.get_mp()->get_mg() == mg) ;
assert( source_quad.check_dzpuis(4) ) ;
int mpsymm = uu.get_mp()->get_mg()->get_type_t();
double& lambda = par.get_double_mod(0) ;
// Special case of a vanishing source
// ----------------------------------
if ( (source_mat.get_etat() == ETATZERO)
&& (source_quad.get_etat() == ETATZERO) ) {
uu = 0 ;
lambda = 1 ;
return ;
}
// ---------------------------------------------------------------------
// Preparation of the parameters for the Fortran subroutines F77_poisson2d
// and F77_poisson2di
// ---------------------------------------------------------------------
int nz = mg->get_nzone() ;
int np1 = 1 ; // Axisymmetry enforced
int nt = mg->get_nt(0) ;
int nt2 = 0 ;
switch ( mpsymm ){
case SYM: {
nt2 = 2*nt - 1 ; // Number of points for the theta sampling
break; // in [0,Pi], instead of [0,Pi/2]
}
case NONSYM: {
nt2 = nt;
break;
}
}
// Array NDL
// ---------
int* ndl = new int[nz+4] ;
ndl[0] = nz ;
for (int l=0; l<nz; l++) {
ndl[1+l] = mg->get_nr(l) ;
}
ndl[1+nz] = nt2 ;
ndl[2+nz] = np1 ;
ndl[3+nz] = nz ;
// Array INDD
// ----------
int* indd = new int[nz] ;
for (int l=0; l<nz; l++) {
switch ( mg->get_type_r(l) ) {
case RARE : {
indd[l] = 0 ;
break ;
}
case FIN : {
indd[l] = 1 ;
break ;
}
case UNSURR : {
indd[l] = 2 ;
break ;
}
default : {
cout << "Map_af::poisson2d: unknown type_r !" << endl ;
abort() ;
break ;
}
}
}
// Parameters NDR, NDT, NDP and NDZ
// --------------------------------
int nrmax = 0 ;
for (int l=0; l<nz ; l++) {
nrmax = ( ndl[1+l] > nrmax ) ? ndl[1+l] : nrmax ;
}
int ndr = nrmax + 5 ; // Le +5 est impose par les routines de resolution
// de l'equation de Poisson du type gr2p3s_
int ndt = nt2 + 2 ;
int ndp = np1 + 2 ;
int ndz = nz ;
// Array ERRE
// ----------
double* erre = new double [ndz*ndr] ;
for (int l=0; l<nz; l++) {
for (int i=0; i<ndl[1+l]; i++) {
double xr = mg->get_grille3d(l)->x[i] ;
erre[ ndr*l + i ] = alpha[l] * xr + beta[l] ;
}
}
// Arrays containing the data
// --------------------------
int ndrt = ndr*ndt ;
int ndrtp = ndr*ndt*ndp ;
int taille = ndrtp*ndz ;
double* tsou_m = new double[ taille ] ;
double* tsou_q = new double[ taille ] ;
double* tuu = new double[ taille ] ;
// Initialisation to zero :
for (int i=0; i<taille; i++) {
tsou_m[i] = 0 ;
tsou_q[i] = 0 ;
tuu[i] = 0 ;
}
// Copy of source_mat into tsou_m
// ------------------------------
const Valeur& va_m = source_mat.va ;
assert(va_m.get_etat() == ETATQCQ) ;
va_m.coef_i() ;
const Mtbl* s_m = va_m.c ;
assert(s_m->get_etat() == ETATQCQ) ;
Base_val base_s = va_m.base ;
for (int l=0; l<nz; l++) {
int nr = mg->get_nr(l) ;
int nrt = nr*nt ;
if (s_m->t[l]->get_etat() == ETATZERO) {
for (int k=0; k<np1; k++) {
for (int j=0; j<nt; j++) {
for (int i=0; i<nr; i++) {
tsou_m[ndrtp*l + ndrt*k + ndr*j + i] = 0 ;
// point symetrique par rapport au plan theta = pi/2 :
if ( mpsymm == SYM ) tsou_m[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = 0 ;
}
}
}
}
else {
assert( s_m->t[l]->get_etat() == ETATQCQ ) ;
for (int k=0; k<np1; k++) {
for (int j=0; j<nt; j++) {
for (int i=0; i<nr; i++) {
double xx = s_m->t[l]->t[nrt*k + nr*j + i] ;
tsou_m[ndrtp*l + ndrt*k + ndr*j + i] = xx ;
// point symetrique par rapport au plan theta = pi/2 :
if ( mpsymm == SYM ) tsou_m[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = xx ;
}
}
}
} // End of case etat != ETATZERO
}
// Copy of source_quad into tsou_q
// -------------------------------
if (source_quad.get_etat() != ETATZERO) {
const Valeur& va_q = source_quad.va ;
assert(va_q.get_etat() == ETATQCQ) ;
va_q.coef_i() ;
const Mtbl* s_q = va_q.c ;
assert( va_q.base == base_s ) ;
assert(s_q->get_etat() == ETATQCQ) ;
for (int l=0; l<nz; l++) {
int nr = mg->get_nr(l) ;
int nrt = nr*nt ;
if (s_q->t[l]->get_etat() == ETATZERO) {
for (int k=0; k<np1; k++) {
for (int j=0; j<nt; j++) {
for (int i=0; i<nr; i++) {
tsou_q[ndrtp*l + ndrt*k + ndr*j + i] = 0 ;
// point symetrique par rapport au plan theta = pi/2 :
if ( mpsymm == SYM ) tsou_q[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = 0 ;
}
}
}
}
else {
assert( s_q->t[l]->get_etat() == ETATQCQ ) ;
for (int k=0; k<np1; k++) {
for (int j=0; j<nt; j++) {
for (int i=0; i<nr; i++) {
double xx = s_q->t[l]->t[nrt*k + nr*j + i] ;
tsou_q[ndrtp*l + ndrt*k + ndr*j + i] = xx ;
// point symetrique par rapport au plan theta = pi/2 :
if ( mpsymm == SYM ) tsou_q[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = xx ;
}
}
}
} // End of case s_q->t[l]->etat != ETATZERO
}
} // End of case source_quad.etat != ETATZERO
//-----------------------------------------------------------
// Call of the Fortran subroutine poisson2d_ or poisson2di_
//-----------------------------------------------------------
int base_t = (va_m.base).get_base_t(0) ;
Base_val base_uu(nz) ; // Output spectral bases
switch (base_t) {
case T_COS :
case T_COS_P : {
double lambda0 ;
F77_poiss2d(ndl, &ndr, &ndt, &ndp, indd, erre, tsou_m, tsou_q,
&lambda0, tuu) ;
base_uu = base_s ; // output bases = input bases
lambda = lambda0 ;
break ;
}
case T_SIN :
case T_SIN_I : {
double* tsou = new double[taille] ;
for (int i=0; i<taille; i++) {
tsou[i] = tsou_m[i] + tsou_q[i] ;
}
F77_poiss2di(ndl, &ndr, &ndt, &ndp, indd, erre, tsou, tuu) ;
base_uu = base_s ; // output bases = input bases
lambda = double(1) ;
delete [] tsou ;
break ;
}
default : {
cout << "Map_af::poisson2d : unkown theta basis !" << endl ;
cout << " basis : " << hex << base_t << endl ;
abort() ;
break ;
}
}
//-------------------------------
// Copy of tuu into uu
//-------------------------------
uu.allocate_all() ;
(uu.va).set_etat_c_qcq() ; // To make sure that the coefficients are
// deleted
for (int l=0; l<nz; l++) {
int nr = mg->get_nr(l) ;
for (int k=0; k<mg->get_np(l); k++) {
for (int j=0; j<nt; j++) {
for (int i=0; i<nr; i++) {
uu.set(l, k, j, i) = tuu[ndrtp*l + ndr*j + i] ;
}
}
}
}
(uu.va).set_base( base_uu ) ; // Bases for spectral expansions
uu.set_dzpuis(0) ;
// Cleaning
// --------
delete [] ndl ;
delete [] indd ;
delete [] erre ;
delete [] tsou_m ;
delete [] tsou_q ;
delete [] tuu ;
}
}
|