1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*
* Computes the Laplacian of a scalar field (represented by a Cmp) when
* the mapping belongs to the Map_et class
*/
/*
* Copyright (c) 1999-2001 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char map_et_lap_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_et_lap.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $" ;
/*
* $Id: map_et_lap.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $
* $Log: map_et_lap.C,v $
* Revision 1.4 2014/10/13 08:53:05 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.3 2005/11/24 09:25:07 j_novak
* Added the Scalar version for the Laplacian
*
* Revision 1.2 2003/10/15 16:03:37 j_novak
* Added the angular Laplace operator for Scalar.
*
* Revision 1.1.1.1 2001/11/20 15:19:27 e_gourgoulhon
* LORENE
*
* Revision 1.4 2000/02/25 09:02:18 eric
* Remplacement de (uu.get_dzpuis() == 0) par uu.check_dzpuis(0).
*
* Revision 1.3 2000/01/26 13:11:07 eric
* Reprototypage complet :
* le resultat est desormais suppose alloue a l'exterieur de la routine
* et est passe en argument (Cmp& resu).
* .
*
* Revision 1.2 2000/01/14 14:55:05 eric
* Suppression de l'assert(sauve_base == vresu.base)
* car sauve_base == vresu.base n'est pas necessairement vrai (cela
* depend de l'histoire du Cmp uu, notamment de si uu.p_dsdx est
* a jour).
*
* Revision 1.1 1999/12/20 17:27:30 eric
* Initial revision
*
*
* $Header: /cvsroot/Lorene/C++/Source/Map/map_et_lap.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $
*
*/
// Header Lorene
#include "cmp.h"
#include "tensor.h"
// Laplacian: Scalar version
namespace Lorene {
void Map_et::laplacien(const Scalar& uu, int zec_mult_r, Scalar& resu) const {
assert (uu.get_etat() != ETATNONDEF) ;
assert (uu.get_mp().get_mg() == mg) ;
// Particular case of null value:
if ((uu.get_etat() == ETATZERO) || (uu.get_etat() == ETATUN)) {
resu.set_etat_zero() ;
return ;
}
assert( uu.get_etat() == ETATQCQ ) ;
assert( uu.check_dzpuis(0) ) ;
int nz = get_mg()->get_nzone() ;
int nzm1 = nz - 1 ;
// Indicator of existence of a compactified external domain
bool zec = false ;
if (mg->get_type_r(nzm1) == UNSURR) {
zec = true ;
}
if ( zec && (zec_mult_r != 4) ) {
cout << "Map_et::laplacien : the case zec_mult_r = " <<
zec_mult_r << " is not implemented !" << endl ;
abort() ;
}
//--------------------
// First operations
//--------------------
Valeur duudx = uu.get_spectral_va().dsdx() ; // d/dx
Valeur d2uudx2 = uu.get_spectral_va().d2sdx2() ; // d^2/dx^2
const Valeur& d2uudtdx = duudx.dsdt() ; // d^2/dxdtheta
const Valeur& std2uudpdx = duudx.stdsdp() ; // 1/sin(theta) d^2/dxdphi
//------------------
// Angular Laplacian
//------------------
Valeur sxlapang = uu.get_spectral_va() ;
sxlapang.ylm() ;
sxlapang = sxlapang.lapang() ;
sxlapang = sxlapang.sx() ; // 1/x in the nucleus
// Id in the shells
// 1/(x-1) in the ZEC
//------------------------------------
// (2 dx/dR d/dx + x/R 1/x Lap_ang)/x
//------------------------------------
Valeur varduudx = duudx ;
if (zec) {
varduudx.annule(nzm1) ; // term in d/dx set to zero in the ZEC
}
resu.set_etat_qcq() ;
Valeur& vresu = resu.set_spectral_va() ;
Base_val sauve_base = varduudx.base ;
vresu = double(2) * dxdr * varduudx + xsr * sxlapang ;
vresu.set_base(sauve_base) ;
vresu = vresu.sx() ;
//--------------
// Final result
//--------------
Mtbl unjj = double(1) + srdrdt*srdrdt + srstdrdp*srstdrdp ;
sauve_base = d2uudx2.base ;
// assert(sauve_base == vresu.base) ; // this is not necessary true
vresu = dxdr*dxdr * unjj * d2uudx2 + xsr * vresu
- double(2) * dxdr * ( sr2drdt * d2uudtdx
+ sr2stdrdp * std2uudpdx ) ;
vresu += - dxdr * ( lapr_tp + dxdr * (
dxdr* unjj * d2rdx2
- double(2) * ( sr2drdt * d2rdtdx + sr2stdrdp * sstd2rdpdx ) )
) * duudx ;
vresu.set_base(sauve_base) ;
if (zec == 1) {
resu.set_dzpuis(zec_mult_r) ;
}
}
// Laplacian: Cmp version
void Map_et::laplacien(const Cmp& uu, int zec_mult_r, Cmp& resu) const {
assert (uu.get_etat() != ETATNONDEF) ;
assert (uu.get_mp()->get_mg() == mg) ;
// Particular case of null value:
if (uu.get_etat() == ETATZERO) {
resu.set_etat_zero() ;
return ;
}
assert( uu.get_etat() == ETATQCQ ) ;
assert( uu.check_dzpuis(0) ) ;
int nz = get_mg()->get_nzone() ;
int nzm1 = nz - 1 ;
// Indicator of existence of a compactified external domain
bool zec = false ;
if (mg->get_type_r(nzm1) == UNSURR) {
zec = true ;
}
if ( zec && (zec_mult_r != 4) ) {
cout << "Map_et::laplacien : the case zec_mult_r = " <<
zec_mult_r << " is not implemented !" << endl ;
abort() ;
}
//--------------------
// First operations
//--------------------
Valeur duudx = (uu.va).dsdx() ; // d/dx
Valeur d2uudx2 = (uu.va).d2sdx2() ; // d^2/dx^2
const Valeur& d2uudtdx = duudx.dsdt() ; // d^2/dxdtheta
const Valeur& std2uudpdx = duudx.stdsdp() ; // 1/sin(theta) d^2/dxdphi
//------------------
// Angular Laplacian
//------------------
Valeur sxlapang = uu.va ;
sxlapang.ylm() ;
sxlapang = sxlapang.lapang() ;
sxlapang = sxlapang.sx() ; // 1/x in the nucleus
// Id in the shells
// 1/(x-1) in the ZEC
//------------------------------------
// (2 dx/dR d/dx + x/R 1/x Lap_ang)/x
//------------------------------------
Valeur varduudx = duudx ;
if (zec) {
varduudx.annule(nzm1) ; // term in d/dx set to zero in the ZEC
}
resu.set_etat_qcq() ;
Valeur& vresu = resu.va ;
Base_val sauve_base = varduudx.base ;
vresu = double(2) * dxdr * varduudx + xsr * sxlapang ;
vresu.set_base(sauve_base) ;
vresu = vresu.sx() ;
//--------------
// Final result
//--------------
Mtbl unjj = double(1) + srdrdt*srdrdt + srstdrdp*srstdrdp ;
sauve_base = d2uudx2.base ;
// assert(sauve_base == vresu.base) ; // this is not necessary true
vresu = dxdr*dxdr * unjj * d2uudx2 + xsr * vresu
- double(2) * dxdr * ( sr2drdt * d2uudtdx
+ sr2stdrdp * std2uudpdx ) ;
vresu += - dxdr * ( lapr_tp + dxdr * (
dxdr* unjj * d2rdx2
- double(2) * ( sr2drdt * d2rdtdx + sr2stdrdp * sstd2rdpdx ) )
) * duudx ;
vresu.set_base(sauve_base) ;
if (zec == 1) {
resu.set_dzpuis(zec_mult_r) ;
}
}
void Map_et::lapang(const Scalar& , Scalar& ) const {
cout << "Map_et::lapang : not implemented yet!" << endl ;
abort() ;
}
}
|