File: map_et_poisson2d.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (431 lines) | stat: -rw-r--r-- 12,193 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
 * Method of the class Map_et for the resolution of the 2-D Poisson
 *  equation.
 *
 * (see file map.h for documentation).
 */

/*
 *   Copyright (c) 2000-2001 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char map_et_poisson2d_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_et_poisson2d.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $" ;

/*
 * $Id: map_et_poisson2d.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $
 * $Log: map_et_poisson2d.C,v $
 * Revision 1.4  2014/10/13 08:53:05  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:13:13  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2002/02/07 14:55:58  e_gourgoulhon
 * Corrected a bug when the source is known only in the coefficient
 * space.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 2.4  2000/11/07  14:21:03  eric
 * Correction d'une erreur dans le cas T_SIN_I (calcul de R(u)).
 *
 * Revision 2.3  2000/10/26  15:58:00  eric
 * Correction cas T_COS_P : l'import de saff_q se fait par copie du Tbl.
 *
 * Revision 2.2  2000/10/12  15:37:43  eric
 * Traitement des bases spectrales dans le cas T_COS_P.
 *
 * Revision 2.1  2000/10/11  15:15:43  eric
 * 1ere version operationnelle.
 *
 * Revision 2.0  2000/10/09  13:47:17  eric
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Map/map_et_poisson2d.C,v 1.4 2014/10/13 08:53:05 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene:
#include "map.h"
#include "cmp.h"
#include "param.h"

//*****************************************************************************

namespace Lorene {

void Map_et::poisson2d(const Cmp& source_mat, const Cmp& source_quad, 
		       Param& par, Cmp& uu) const {
    
    assert(source_mat.get_etat() != ETATNONDEF) ; 
    assert(source_quad.get_etat() != ETATNONDEF) ; 
    assert(source_mat.get_mp()->get_mg() == mg) ; 
    assert(source_quad.get_mp()->get_mg() == mg) ; 
    assert(uu.get_mp()->get_mg() == mg) ; 

    assert( source_quad.check_dzpuis(4) ) ; 
    
    double& lambda = par.get_double_mod(0) ; 
    int nz = mg->get_nzone() ; 
    int nzm1 = nz-1 ; 

    // Special case of a vanishing source 
    // ----------------------------------

    if (    (source_mat.get_etat() == ETATZERO) 
	 && (source_quad.get_etat() == ETATZERO) ) {
	
	uu = 0 ; 
	lambda = 1 ; 
	return ; 
    }

    int base_t = ((source_mat.va).base).get_base_t(0) ; 

    switch (base_t) {
    
    //==================================================================
    //		case T_COS_P
    //==================================================================

	case T_COS_P : {

    // Construction of a Map_af which coincides with *this on the equator
    // ------------------------------------------------------------------
    
    double theta0 = M_PI / 2 ;	    // Equator
    double phi0 = 0 ; 

    Map_af mpaff(*this) ; 

    for (int l=0 ; l<nz ; l++) {
	double rmax = val_r(l, double(1), theta0, phi0) ;
	switch ( mg->get_type_r(l) ) {
	    case RARE:	{
		double rmin = val_r(l, double(0), theta0, phi0) ;
		mpaff.set_alpha(rmax - rmin, l) ;
		mpaff.set_beta(rmin, l) ;
		break ; 
	    }
	    
	    case FIN:	{
		double rmin = val_r(l, double(-1), theta0, phi0) ;
		mpaff.set_alpha( double(.5) * (rmax - rmin), l ) ;
		mpaff.set_beta( double(.5) * (rmax + rmin), l) ;
		break ;
	    }
	    
	    case UNSURR: {
		double rmin = val_r(l, double(-1), theta0, phi0) ;
		double umax = double(1) / rmin ;
		double umin = double(1) / rmax ;
		mpaff.set_alpha( double(.5) * (umin - umax),  l) ; 
		mpaff.set_beta( double(.5) * (umin + umax), l) ; 
		break ;
	    }
	    
	    default: {
		cout << "Map_et::poisson2d: unknown type_r ! " << endl ;
		abort () ;
		break ;
	    }
	    
	}
    }

    // Importation of source_mat and source_quad of the affine mapping
    // ---------------------------------------------------------------
    Cmp saff_m(mpaff) ; 
    saff_m.import( nzm1, source_mat ) ; 
    (saff_m.va).set_base( (source_mat.va).base ) ; 
    
    Cmp saff_q(mpaff) ; 
    
    // In order to use Cmp::import with dzpuis != 0 :
    Cmp set_q = source_quad ; 
    set_q.set_dzpuis(0) ;	// dzpuis artificially set to 0

    saff_q.import( nzm1, set_q ) ; 
    (saff_q.va).set_base( (set_q.va).base ) ; 

    // Copy in the external domain :
    if ( (set_q.va).get_etat() == ETATQCQ) {
        (set_q.va).coef_i() ; // the values in configuration space are required
        assert(   (set_q.va).c->get_etat() == ETATQCQ ) ;
        assert(  (saff_q.va).c->get_etat() == ETATQCQ ) ;
	*( (saff_q.va).c->t[nzm1] ) = *( (set_q.va).c->t[nzm1] ) ;
    }

    // the true dzpuis is restored : 
    saff_q.set_dzpuis( source_quad.get_dzpuis() ) ; 

    // Resolution of the 2-D Poisson equation on the spherical domains
    // ---------------------------------------------------------------
    
    Cmp uaff(mpaff) ; 
    
    mpaff.poisson2d(saff_m, saff_q, par, uaff) ;
    
    // Importation of the solution on the Map_et mapping *this
    // -------------------------------------------------------
    
    uu.import(uaff) ; 
    
    uu.va.set_base( uaff.va.base ) ;	// same spectral bases 
    
    break ;
    }
    
    //==================================================================
    //		case T_SIN_I
    //==================================================================

	case T_SIN_I : {
	     
    //-------------------------------
    // Computation of the prefactor a  ---> Cmp apre
    //-------------------------------

    Mtbl unjj = 1 + srdrdt*srdrdt  ;

    Mtbl apre1(*mg) ; 
    apre1.set_etat_qcq() ; 
    for (int l=0; l<nz; l++) {
	*(apre1.t[l]) = alpha[l]*alpha[l] ; 
    }

    apre1 = apre1 * dxdr * dxdr * unjj ;

    Cmp apre(*this) ; 
    apre = apre1 ; 
    
    Tbl amax0 = max(apre1) ;	// maximum values in each domain

    // The maximum values of a in each domain are put in a Mtbl
    Mtbl amax1(*mg) ; 
    amax1.set_etat_qcq() ; 
    for (int l=0; l<nz; l++) {
	*(amax1.t[l]) = amax0(l) ; 
    }

    Cmp amax(*this) ; 
    amax = amax1 ; 

    
    //-------------------
    //  Initializations 
    //-------------------
    
    int nitermax = par.get_int() ; 
    int& niter = par.get_int_mod() ; 
    double lambda_relax = par.get_double() ; 
    double unmlambda_relax = 1. - lambda_relax ; 
    double precis = par.get_double(1) ;     
    
    Cmp& ssj = par.get_cmp_mod() ; 
    
    Cmp ssjm1 = ssj ; 
    Cmp ssjm2 = ssjm1 ; 

    Cmp ssj_q(*this) ;
    ssj_q = 0 ;  
    
    Valeur& vuu = uu.va ; 

    Valeur vuujm1(*mg) ;
    if (uu.get_etat() == ETATZERO) {
	vuujm1 = 1 ;	// to take relative differences
	vuujm1.set_base( vuu.base ) ; 
    }
    else{
	vuujm1 = vuu ; 
    }
    
    // Affine mapping for the Laplacian-tilde

    Map_af mpaff(*this) ; 

    cout << "Map_et::poisson2d : relat. diff. u^J <-> u^{J-1} : " << endl ;
    
//==========================================================================
//==========================================================================
//			    Start of iteration 
//==========================================================================
//==========================================================================

    Tbl tdiff(nz) ; 
    double diff ; 
    niter = 0 ; 
    
    do {

    //====================================================================
    //		Computation of R(u)    (the result is put in uu)
    //====================================================================


    //-----------------------
    // First operations on uu
    //-----------------------
    
    Valeur duudx = (uu.va).dsdx() ;	    // d/dx 

    const Valeur& d2uudtdx = duudx.dsdt() ;	    // d^2/dxdtheta

    //-------------------
    // 1/x d^2uu/dtheta^2
    //-------------------
    
    Valeur sxlapang = uu.va ; 

    sxlapang = sxlapang.d2sdt2() ;    
    
    sxlapang = sxlapang.sx() ;	  //  d^2(uu)/dth^2 /x      in the nucleus
				  //  d^2(uu)/dth^2         in the shells
				  //  d^2(uu)/dth^2 /(x-1)  in the ZEC
    
    //---------------------------------------------------------------
    //  Computation of 
    // [ (dR/dx)^{-1} ( A - 1 ) duu/dx + 1/R (B - 1) d^2uu/dth^2 ] / x
    //
    // with A = 1/(dRdx) R/(x+beta_l/alpha_l) unjj 
    //	    B = [1/(dRdx) R/(x+beta_l/alpha_l)]^2 unjj 
    // 
    //  The result is put in uu (via vuu)
    //---------------------------------------------------------------

    // Intermediate quantity jac which value is
    //     (dR/dx)^{-1}   in the nucleus and the shells
    //     +(dU/dx)^{-1}  in the ZEC

    Mtbl jac = dxdr ; 
    if (mg->get_type_r(nzm1) == UNSURR) {
	jac.annule(nzm1, nzm1) ; 
	Mtbl jac_ext = dxdr ; 
	jac_ext.annule(0, nzm1-1) ;
	jac_ext = - jac_ext ; 
	jac = jac + jac_ext ; 
    }

    uu.set_etat_qcq() ; 
    
    Base_val sauve_base = duudx.base ; 
    
    vuu = jac * ( rsxdxdr * unjj - 1.) * duudx 
		+ ( rsxdxdr*rsxdxdr * unjj - 1.) * xsr * sxlapang ; 

    vuu.set_base(sauve_base) ; 

    vuu = vuu.sx() ; 

    //---------------------------------------
    // Computation of  R(u)  
    //
    //  The result is put in uu (via vuu)
    //---------------------------------------


    sauve_base = vuu.base ; 

    vuu =  xsr * vuu 
		+ 2. * dxdr * sr2drdt * d2uudtdx  ;

    vuu += dxdr * ( sr2d2rdt2 + dxdr * ( 
		dxdr* unjj * d2rdx2 
		- 2. * sr2drdt * d2rdtdx  ) 
				 ) * duudx ;		    

    vuu.set_base(sauve_base) ; 

    // Since the assignment is performed on vuu (uu.va), the treatment
    //  of uu.dzpuis must be performed by hand:
    
    uu.set_dzpuis(4) ; 

    //====================================================================
    //   Computation of the effective source s^J of the ``affine''
    //     Poisson equation 
    //====================================================================
    
    ssj = lambda_relax * ssjm1 + unmlambda_relax * ssjm2 ; 
    
    ssj = ( source_mat + source_quad + uu + (amax - apre) * ssj ) / amax ; 

    (ssj.va).set_base((source_mat.va).base) ; 
    
    //====================================================================
    //   Resolution of the ``affine'' Poisson equation 
    //====================================================================
    
    assert( uu.check_dzpuis( ssj.get_dzpuis() ) ) ; 
    					               
    mpaff.poisson2d(ssj, ssj_q, par, uu) ; 

    tdiff = diffrel(vuu, vuujm1) ; 

    diff = max(tdiff) ;
    

    cout << "  step " << niter << " :  " ; 
    for (int l=0; l<nz; l++) {
	cout << tdiff(l) << "  " ;  
    }
    cout << endl ; 

    //=================================
    //  Updates for the next iteration
    //=================================
    
    ssjm2 = ssjm1 ; 
    ssjm1 = ssj ; 
    vuujm1 = vuu ; 
    
    niter++ ; 
    
    }	// End of iteration 
    while ( (diff > precis) && (niter < nitermax) ) ;
    
//==========================================================================
//==========================================================================
//			    End of iteration 
//==========================================================================
//==========================================================================
	

    break ; 
    }
    
	default : {
	    cout << "Map_et::poisson2d : unkown theta basis !" << endl ; 
	    cout << "  basis : " << hex << base_t << endl ; 
	    abort() ; 
	    break ; 
	}
    }	// End of switch on base_t
}


}