File: map_log_elliptic.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (327 lines) | stat: -rw-r--r-- 10,093 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/**
 *   Copyright (c) 2004 Philippe Grandclement
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char map_log_elliptic_C[] = "$Header $" ;

/*
 * $Id: map_log_elliptic.C,v 1.6 2014/10/13 08:53:05 j_novak Exp $
 * $Log: map_log_elliptic.C,v $
 * Revision 1.6  2014/10/13 08:53:05  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2014/10/06 15:13:13  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.4  2007/01/16 15:08:07  n_vasset
 * New constructor, usn Scalar on mono-domain angular grid for boundary,
 * for function sol_elliptic_boundary()
 *
 * Revision 1.3  2005/06/09 07:57:32  f_limousin
 * Implement a new function sol_elliptic_boundary() and
 * Vector::poisson_boundary(...) which solve the vectorial poisson
 * equation (method 6) with an inner boundary condition.
 *
 * Revision 1.2  2004/08/24 09:14:42  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.1  2004/06/22 08:49:58  p_grandclement
 * Addition of everything needed for using the logarithmic mapping
 *
 * Revision 1.4  2004/03/17 15:58:48  p_grandclement
 *
 * $Header: /cvsroot/Lorene/C++/Source/Map/map_log_elliptic.C,v 1.6 2014/10/13 08:53:05 j_novak Exp $
 *
 */

// Header C : 
#include <cstdlib>
#include <cmath>

// Headers Lorene :
#include "tbl.h"
#include "mtbl_cf.h"
#include "map.h"
#include "param_elliptic.h"
         
            //----------------------------------------------
	   //		General elliptic solver
	  //----------------------------------------------

namespace Lorene {
void Map_log::sol_elliptic(Param_elliptic& ope_var, const Scalar& source, 
			  Scalar& pot) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver (ope_var, *(rho.c_cf)) ;
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}


         //--------------------------------------------------
         //		General elliptic solver with boundary as Mtbl_cf
         //--------------------------------------------------


void Map_log::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source, 
			   Scalar& pot, const Mtbl_cf& bound, 
			   double fact_dir, double fact_neu) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound, 
					   fact_dir, fact_neu) ;
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

   
         //--------------------------------------------------
         //		General elliptic solver with boundary as Scalar
         //--------------------------------------------------


void Map_log::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source, 
			   Scalar& pot, const Scalar& bound, 
			   double fact_dir, double fact_neu) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
    Scalar bbound = bound;
  bbound.set_spectral_va().ylm() ;
  const Map& mapp = bbound.get_mp();
 
  const Mg3d& gri2d = *mapp.get_mg();

  assert(&gri2d == source.get_mp().get_mg()->get_angu_1dom()) ;
  
  Mtbl_cf bound2 (gri2d , bbound.get_spectral_base()) ;
  bound2.annule_hard() ;  

  if (bbound.get_etat() != ETATZERO){ 
 
      int nr = gri2d.get_nr(0) ;
      int nt = gri2d.get_nt(0) ; 
      int np = gri2d.get_np(0) ; 
       
	  for(int k=0; k<np+2; k++)
	      for (int j=0; j<=nt-1; j++)
		  for(int xi=0; xi<= nr-1; xi++)
		  {
  bound2.set(0, k , j , xi) = (*bbound.get_spectral_va().c_cf)(0, k, j, xi) ;   
  }
  }  
 
  
  Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound2, 
					   fact_dir, fact_neu) ;
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

  
            //------------------------------------------------
	   //		General elliptic solver with no zec
	  //-------------------------------------------------

void Map_log::sol_elliptic_no_zec (Param_elliptic& ope_var, const Scalar& source, 
			  Scalar& pot, double val) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_no_zec (ope_var, *(rho.c_cf), val) ;
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

   
}