1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/**
* Copyright (c) 2004 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char map_log_elliptic_C[] = "$Header $" ;
/*
* $Id: map_log_elliptic.C,v 1.6 2014/10/13 08:53:05 j_novak Exp $
* $Log: map_log_elliptic.C,v $
* Revision 1.6 2014/10/13 08:53:05 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2014/10/06 15:13:13 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.4 2007/01/16 15:08:07 n_vasset
* New constructor, usn Scalar on mono-domain angular grid for boundary,
* for function sol_elliptic_boundary()
*
* Revision 1.3 2005/06/09 07:57:32 f_limousin
* Implement a new function sol_elliptic_boundary() and
* Vector::poisson_boundary(...) which solve the vectorial poisson
* equation (method 6) with an inner boundary condition.
*
* Revision 1.2 2004/08/24 09:14:42 p_grandclement
* Addition of some new operators, like Poisson in 2d... It now requieres the
* GSL library to work.
*
* Also, the way a variable change is stored by a Param_elliptic is changed and
* no longer uses Change_var but rather 2 Scalars. The codes using that feature
* will requiere some modification. (It should concern only the ones about monopoles)
*
* Revision 1.1 2004/06/22 08:49:58 p_grandclement
* Addition of everything needed for using the logarithmic mapping
*
* Revision 1.4 2004/03/17 15:58:48 p_grandclement
*
* $Header: /cvsroot/Lorene/C++/Source/Map/map_log_elliptic.C,v 1.6 2014/10/13 08:53:05 j_novak Exp $
*
*/
// Header C :
#include <cstdlib>
#include <cmath>
// Headers Lorene :
#include "tbl.h"
#include "mtbl_cf.h"
#include "map.h"
#include "param_elliptic.h"
//----------------------------------------------
// General elliptic solver
//----------------------------------------------
namespace Lorene {
void Map_log::sol_elliptic(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver (ope_var, *(rho.c_cf)) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//--------------------------------------------------
// General elliptic solver with boundary as Mtbl_cf
//--------------------------------------------------
void Map_log::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, const Mtbl_cf& bound,
double fact_dir, double fact_neu) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound,
fact_dir, fact_neu) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//--------------------------------------------------
// General elliptic solver with boundary as Scalar
//--------------------------------------------------
void Map_log::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, const Scalar& bound,
double fact_dir, double fact_neu) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Scalar bbound = bound;
bbound.set_spectral_va().ylm() ;
const Map& mapp = bbound.get_mp();
const Mg3d& gri2d = *mapp.get_mg();
assert(&gri2d == source.get_mp().get_mg()->get_angu_1dom()) ;
Mtbl_cf bound2 (gri2d , bbound.get_spectral_base()) ;
bound2.annule_hard() ;
if (bbound.get_etat() != ETATZERO){
int nr = gri2d.get_nr(0) ;
int nt = gri2d.get_nt(0) ;
int np = gri2d.get_np(0) ;
for(int k=0; k<np+2; k++)
for (int j=0; j<=nt-1; j++)
for(int xi=0; xi<= nr-1; xi++)
{
bound2.set(0, k , j , xi) = (*bbound.get_spectral_va().c_cf)(0, k, j, xi) ;
}
}
Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound2,
fact_dir, fact_neu) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//------------------------------------------------
// General elliptic solver with no zec
//-------------------------------------------------
void Map_log::sol_elliptic_no_zec (Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, double val) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_no_zec (ope_var, *(rho.c_cf), val) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
}
|