1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/*
* Copyright (c) 2004 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char val_dern_1d_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/Operators/val_dern_1d.C,v 1.2 2014/10/13 08:53:27 j_novak Exp $" ;
/*
* $Id: val_dern_1d.C,v 1.2 2014/10/13 08:53:27 j_novak Exp $
* $Log: val_dern_1d.C,v $
* Revision 1.2 2014/10/13 08:53:27 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.1 2004/02/17 09:21:39 j_novak
* New functions for calculating values of the derivatives of a function
* using its Chebyshev coefficients.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Non_class_members/Operators/val_dern_1d.C,v 1.2 2014/10/13 08:53:27 j_novak Exp $
*
*/
#include "type_parite.h"
#include "tbl.h"
/*
* Functions computing value of f^(n) at boundaries of the interval [-1, 1],
* using the Chebyshev expansion of f. Note: n=0 works too.
*
* Input : 1-dimensional Tbl containing the Chebyshev coefficients of f.
* int base : base of spectral expansion.
*
* Output : double : the value of the n-th derivative of f at x=+/- 1.
*
*/
namespace Lorene {
double val1_dern_1d(int n, const Tbl& tb, int base_r)
{
//This function should be OK for any radial base
assert ( (base_r == R_CHEB) || (base_r == R_CHEBI) || (base_r == R_CHEBP) ||
(base_r == R_CHEBU) ) ;
assert (n>=0) ;
assert (tb.get_ndim() == 1) ;
int nr = tb.get_dim(0) ;
double resu = 0. ;
int n_ini = ( (base_r == R_CHEBP) || (base_r == R_CHEBI) ) ? n / 2 : n ;
double *tbi = &tb.t[n_ini] ;
for (int i=n_ini; i<nr; i++) {
double fact = 1. ;
int ii = i ;
if (base_r == R_CHEBP) ii *= 2 ;
if (base_r == R_CHEBI) ii = 2*i + 1 ;
for (int j=0; j<n; j++)
fact *= double(ii*ii - j*j)/double(2*j + 1) ;
resu += fact * (*tbi) ;
tbi++ ;
}
return resu ;
}
double valm1_dern_1d(int n, const Tbl& tb, int base_r)
{
//This function should be OK for any radial base
assert ( (base_r == R_CHEB) || (base_r == R_CHEBI) || (base_r == R_CHEBP) ||
(base_r == R_CHEBU) ) ;
assert (n>=0) ;
assert (tb.get_ndim() == 1) ;
int nr = tb.get_dim(0) ;
double resu = 0. ;
double parite, fac ;
int n_ini ;
switch (base_r) {
case R_CHEBP:
n_ini = n / 2 ;
parite = 1 ;
fac = (n%2 == 0 ? 1 : -1) ;
break ;
case R_CHEBI:
n_ini = n / 2 ;
fac = (n%2 == 0 ? -1 : 1) ;
parite = 1 ;
break ;
default:
n_ini = n ;
parite = -1 ;
fac = 1 ;
break ;
}
double *tbi = &tb.t[n_ini] ;
for (int i=n_ini; i<nr; i++) {
double fact = fac ;
int ii = i ;
if (base_r == R_CHEBP) ii *= 2 ;
if (base_r == R_CHEBI) ii = 2*i + 1 ;
for (int j=0; j<n; j++)
fact *= double(ii*ii - j*j)/double(2*j + 1) ;
resu += fact * (*tbi) ;
fac *= parite ;
tbi++ ;
}
return resu ;
}
}
|