File: interpol_herm.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (524 lines) | stat: -rw-r--r-- 16,575 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/*
 * Hermite interpolation functions.
 *
 */

/*
 *   Copyright (c) 2000-2002 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char interpol_herm_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/Utilities/interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $" ;

/*
 * $Id: interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $
 * $Log: interpol_herm.C,v $
 * Revision 1.13  2015/06/15 15:08:22  j_novak
 * New file interpol_bifluid for interpolation of 2-fluid EoSs
 *
 * Revision 1.12  2015/06/10 14:39:18  a_sourie
 * New class Eos_bf_tabul for tabulated 2-fluid EoSs and associated functions for the computation of rotating stars with such EoSs.
 *
 * Revision 1.11  2015/01/27 14:22:38  j_novak
 * New methods in Eos_tabul to correct for EoS themro consistency (optional).
 *
 * Revision 1.10  2014/10/13 08:53:32  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.9  2013/12/12 16:07:30  j_novak
 * interpol_herm_2d outputs df/dx, used to get the magnetization.
 *
 * Revision 1.8  2012/09/04 14:53:28  j_novak
 * Replacement of the FORTRAN version of huntm by a C one.
 *
 * Revision 1.7  2011/10/04 16:05:19  j_novak
 * Update of Eos_mag class. Suppression of loge, re-definition of the derivatives
 * and use of interpol_herm_2d.
 *
 * Revision 1.6  2011/10/03 13:44:45  j_novak
 * Updated the y-derivative for the 2D version
 *
 * Revision 1.5  2011/09/27 15:38:11  j_novak
 * New function for 2D interpolation added. The computation of 1st derivative is
 * still missing.
 *
 * Revision 1.4  2003/11/21 16:14:51  m_bejger
 * Added the linear interpolation
 *
 * Revision 1.3  2003/05/15 09:42:12  e_gourgoulhon
 * Added the new function interpol_herm_der
 *
 * Revision 1.2  2002/09/09 13:00:40  e_gourgoulhon
 * Modification of declaration of Fortran 77 prototypes for
 * a better portability (in particular on IBM AIX systems):
 * All Fortran subroutine names are now written F77_* and are
 * defined in the new file C++/Include/proto_f77.h.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:29  e_gourgoulhon
 * LORENE
 *
 * Revision 2.0  2000/11/22  19:31:42  eric
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/Utilities/interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $
 *
 */

// Headers Lorene
#include "tbl.h"

namespace Lorene {

  //---------------------------------------------------------------
  // Value bracketting in an ordered table (from Numerical Recipes)
  //---------------------------------------------------------------
  void huntm(const Tbl& xx, double& x, int& i_low) {
    
    assert (xx.get_etat() == ETATQCQ) ;
    int nx = xx.get_taille() ;
    bool ascend = ( xx(nx-1) > xx(0) ) ;
    int i_hi ;
    if ( (i_low < 0)||(i_low>=nx) ) {
      i_low = -1 ;
      i_hi = nx ;
    }
    else {
      int inc = 1 ;
      if ( (x >= xx(i_low)) == ascend ) {
	if (i_low == nx -1) return ;
	i_hi = i_low + 1 ;
	while ( (x >= xx(i_hi)) == ascend ) {
	  i_low = i_hi ;
	  inc += inc ;
	  i_hi = i_low + inc ;
	  if (i_hi >= nx) {
	    i_hi = nx ;
	    break ;
	  }
	}
      } else {
	if (i_low == 0) {
	  i_low = -1 ;
	  return ;
	}
	i_hi = i_low-- ;
	while ( (x < xx(i_low)) == ascend ) {
	  i_hi = i_low ;
	  inc += inc ;
	  if ( inc >= i_hi ) {
	    i_low = 0 ;
	    break ;
	  }
	  else i_low = i_hi - inc ;
	}
      }
    }
    while ( (i_hi - i_low) > 1) {
      int i_med = (i_hi + i_low) / 2 ;
      if ( (x>=xx(i_med)) == ascend ) i_low = i_med ;
      else i_hi = i_med ;
    }
    if (x == xx(nx-1)) i_low = nx-2 ;
    if (x == xx(0)) i_low = 0 ;
    return ;
  }

  //---------------------
  // Linear interpolation 
  //---------------------
  void interpol_linear(const Tbl& xtab, const Tbl& ytab, 
		       double x, int& i, double& y) {
    
    assert(ytab.dim == xtab.dim) ;
    //assert(dytab.dim == xtab.dim) ;	
    
    huntm(xtab, x, i) ;
    
    int i1 = i + 1 ;
    
    // double dx  = xtab(i1) - xtab(i) ;
    double y1  = ytab(i) ;
    double y2  = ytab(i1) ;
    
    double x1  = xtab(i) ;
    double x2  = xtab(i1) ;
    double x12 = x1-x2 ;
    
    double a  = (y1-y2)/x12 ;
    double b  = (x1*y2-y1*x2)/x12 ;
	
    y  = x*a+b ; 
    
  }
  
  //------------------------------------------------------------
  // Cubic Hermite interpolation, returning the first derivative
  //------------------------------------------------------------
  void interpol_herm(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
		     double x, int& i, double& y, double& dy) {
    
    assert(ytab.dim == xtab.dim) ;
    assert(dytab.dim == xtab.dim) ;	
    
    huntm(xtab, x, i) ;
    
    int i1 = i + 1 ;
    
    double dx = xtab(i1) - xtab(i) ;
    
    double u = (x - xtab(i)) / dx ;
    double u2 = u*u ;
    double u3 = u2*u ;
    
    y =   ytab(i) * ( 2.*u3 - 3.*u2 + 1.)
      + ytab(i1) * ( 3.*u2 - 2.*u3)
      + dytab(i) * dx * ( u3 - 2.*u2 + u )
      - dytab(i1) * dx * ( u2 - u3 ) ;

    dy =   6. * ( ytab(i) / dx * ( u2 - u )
		  - ytab(i1) / dx * ( u2 - u ) )
      + dytab(i) * ( 3.*u2 - 4.*u + 1. )
      + dytab(i1) * ( 3.*u2 - 2.*u ) ;
  }


  //-------------------------------------------------------------
  // Cubic Hermite interpolation, returning the second derivative
  //-------------------------------------------------------------
  void interpol_herm_der(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
			 double x, int& i, double& y, double& dy, double& ddy) {
    
    assert(ytab.dim == xtab.dim) ;
    assert(dytab.dim == xtab.dim) ;	
    
    huntm(xtab, x, i) ;
    
    //	i-- ; 	// Fortran --> C
    
    int i1 = i + 1 ;
    
    double dx = xtab(i1) - xtab(i) ;
    
    double u = (x - xtab(i)) / dx ;
    double u2 = u*u ;
    double u3 = u2*u ;
    
    y =   ytab(i) * ( 2.*u3 - 3.*u2 + 1.)
      + ytab(i1) * ( 3.*u2 - 2.*u3)
      + dytab(i) * dx * ( u3 - 2.*u2 + u )
      - dytab(i1) * dx * ( u2 - u3 ) ;
    
    dy =   6. * ( ytab(i) - ytab(i1) ) * ( u2 - u ) / dx 
      + dytab(i) * ( 3.*u2 - 4.*u + 1. )
      + dytab(i1) * ( 3.*u2 - 2.*u ) ;
    
    ddy = 6 * ( ( ytab(i) - ytab(i1) ) * ( 2.*u - 1. ) / dx
		+  dytab(i) * (6.*u - 4.)
		+  dytab(i1) * (6.*u - 2.) ) / dx ; 
    
  }

  //----------------------------------------------
  // Bi-cubic Hermite interpolation, for 2D arrays
  //----------------------------------------------
  void interpol_herm_2d(const Tbl& xtab, const Tbl& ytab, const Tbl& ftab, 
			const Tbl& dfdxtab, const Tbl& dfdytab, const Tbl& 
			d2fdxdytab, double x, double y, double& f, double& 
			dfdx, double& dfdy) {

    assert(ytab.dim == xtab.dim) ;
    assert(ftab.dim == xtab.dim) ;
    assert(dfdxtab.dim == xtab.dim) ;
    assert(dfdytab.dim == xtab.dim) ;
    assert(d2fdxdytab.dim == xtab.dim) ;
    
    int nbp1, nbp2;
    nbp1 = xtab.get_dim(0);
    nbp2 = xtab.get_dim(1);
    
    int i_near = 0 ;
    int j_near = 0 ;
    
    while ((xtab(i_near,0) <= x) && (nbp2 > i_near)) {
      i_near++; 
    }
    if (i_near != 0) {
      i_near-- ; 
    }
    j_near = 0;
    while ((ytab(i_near,j_near) < y) && (nbp1 > j_near)) {
      j_near++ ;
    }
    if (j_near != 0) {
      j_near-- ; 
    }
    
    int i1 = i_near+1 ; int j1 = j_near+1 ;
    
    double dx = xtab(i1, j_near) - xtab(i_near, j_near) ;
    double dy = ytab(i_near, j1) - ytab(i_near, j_near) ;
    
    double u = (x - xtab(i_near, j_near)) / dx ;
    double v = (y - ytab(i_near, j_near)) / dy ;
    
    double u2 = u*u ; double v2 = v*v ;
    double u3 = u2*u ; double v3 = v2*v ;
    
    double psi0_u = 2.*u3 - 3.*u2 + 1. ;
    double psi0_1mu = -2.*u3 + 3.*u2 ;
    double psi1_u = u3 - 2.*u2 + u ;
    double psi1_1mu = -u3 + u2 ;
    
    double psi0_v = 2.*v3 - 3.*v2 + 1. ;
    double psi0_1mv = -2.*v3 + 3.*v2 ;
    double psi1_v = v3 - 2.*v2 + v ;
    double psi1_1mv = -v3 + v2 ;
    
    f = ftab(i_near, j_near) * psi0_u * psi0_v
      + ftab(i1, j_near) * psi0_1mu * psi0_v 
      + ftab(i_near, j1) * psi0_u * psi0_1mv
      + ftab(i1, j1)  * psi0_1mu * psi0_1mv ;
    
    f += (dfdxtab(i_near, j_near) * psi1_u * psi0_v
	  - dfdxtab(i1, j_near) * psi1_1mu * psi0_v
	  + dfdxtab(i_near, j1) * psi1_u * psi0_1mv
	  - dfdxtab(i1, j1) * psi1_1mu * psi0_1mv) * dx ;
    
    f += (dfdytab(i_near, j_near) * psi0_u * psi1_v
	  + dfdytab(i1, j_near) * psi0_1mu * psi1_v
	  - dfdytab(i_near, j1) * psi0_u * psi1_1mv
	  - dfdytab(i1, j1) * psi0_1mu * psi1_1mv) * dy ;
    
    f += (d2fdxdytab(i_near, j_near) * psi1_u * psi1_v
	  - d2fdxdytab(i1, j_near) * psi1_1mu * psi1_v
	  - d2fdxdytab(i_near, j1) * psi1_u * psi1_1mv 
	  + d2fdxdytab(i1, j1) * psi1_1mu * psi1_1mv) * dx * dy ;
    
    double dpsi0_u = 6.*(u2 - u) ;
    double dpsi0_1mu = 6.*(u2 - u) ;
    double dpsi1_u = 3.*u2 - 4.*u + 1. ;
    double dpsi1_1mu = 3.*u2 - 2.*u ;
    
    dfdx = (ftab(i_near, j_near) * dpsi0_u * psi0_v
	    - ftab(i1, j_near) * dpsi0_1mu * psi0_v 
	    + ftab(i_near, j1) * dpsi0_u * psi0_1mv
	    - ftab(i1, j1)  * dpsi0_1mu * psi0_1mv ) / dx;
    
    dfdx += (dfdxtab(i_near, j_near) * dpsi1_u * psi0_v
	     + dfdxtab(i1, j_near) * dpsi1_1mu * psi0_v
	     + dfdxtab(i_near, j1) * dpsi1_u * psi0_1mv
	     + dfdxtab(i1, j1) * dpsi1_1mu * psi0_1mv) ;
    
    dfdx += (dfdytab(i_near, j_near) * dpsi0_u * psi1_v
	     - dfdytab(i1, j_near) * dpsi0_1mu * psi1_v
	     - dfdytab(i_near, j1) * dpsi0_u * psi1_1mv
	     + dfdytab(i1, j1) * dpsi0_1mu * psi1_1mv) * dy /dx ;
    
    dfdx += (d2fdxdytab(i_near, j_near) * dpsi1_u * psi1_v
	     + d2fdxdytab(i1, j_near) * dpsi1_1mu * psi1_v
	     - d2fdxdytab(i_near, j1) * dpsi1_u * psi1_1mv 
	     - d2fdxdytab(i1, j1) * dpsi1_1mu * psi1_1mv) * dy ;

    double dpsi0_v = 6.*(v2 - v) ;
    double dpsi0_1mv = 6.*(v2 - v) ;
    double dpsi1_v = 3.*v2 - 4.*v + 1. ;
    double dpsi1_1mv = 3.*v2 - 2.*v ;
    
    dfdy = (ftab(i_near, j_near) * psi0_u * dpsi0_v
	    + ftab(i1, j_near) * psi0_1mu * dpsi0_v 
	    - ftab(i_near, j1) * psi0_u * dpsi0_1mv
	    - ftab(i1, j1)  * psi0_1mu * dpsi0_1mv) / dy ;
    
    dfdy += (dfdxtab(i_near, j_near) * psi1_u * dpsi0_v
	     - dfdxtab(i1, j_near) * psi1_1mu * dpsi0_v
	     - dfdxtab(i_near, j1) * psi1_u * dpsi0_1mv
	     + dfdxtab(i1, j1) * psi1_1mu * dpsi0_1mv) * dx / dy ;
    
    dfdy += (dfdytab(i_near, j_near) * psi0_u * dpsi1_v
	     + dfdytab(i1, j_near) * psi0_1mu * dpsi1_v
	     + dfdytab(i_near, j1) * psi0_u * dpsi1_1mv
	     + dfdytab(i1, j1) * psi0_1mu * dpsi1_1mv) ;
    
    dfdy += (d2fdxdytab(i_near, j_near) * psi1_u * dpsi1_v
	     - d2fdxdytab(i1, j_near) * psi1_1mu * dpsi1_v
	     + d2fdxdytab(i_near, j1) * psi1_u * dpsi1_1mv 
	     - d2fdxdytab(i1, j1) * psi1_1mu * dpsi1_1mv) * dx ;
    
    return ; 
  }



  void interpol_herm_2d_sans(const Tbl& xtab, const Tbl& ytab, const Tbl& ftab, 
			     const Tbl& dfdxtab, const Tbl& dfdytab, double x, 
			     double y, double& f, double& dfdx, double& dfdy) {

    assert(ytab.dim == xtab.dim) ;
    assert(ftab.dim == xtab.dim) ;
    assert(dfdxtab.dim == xtab.dim) ;
    assert(dfdytab.dim == xtab.dim) ;
    
    int nbp1, nbp2;
    nbp1 = xtab.get_dim(0);
    nbp2 = xtab.get_dim(1);
    
    int i_near = 0 ;
    int j_near = 0 ;
    
    while ((xtab(i_near,0) <= x) && (nbp2 > i_near)) {
      i_near++; 
    }
    if (i_near != 0) {
      i_near-- ; 
    }
    j_near = 0;
    while ((ytab(i_near,j_near) < y) && (nbp1 > j_near)) {
      j_near++ ;
    }
    if (j_near != 0) {
      j_near-- ; 
    }
    
    int i1 = i_near+1 ; int j1 = j_near+1 ;
    
    double dx = xtab(i1, j_near) - xtab(i_near, j_near) ;
    double dy = ytab(i_near, j1) - ytab(i_near, j_near) ;
    
    double u = (x - xtab(i_near, j_near)) / dx ;
    double v = (y - ytab(i_near, j_near)) / dy ;
    
    double u2 = u*u ; double v2 = v*v ;
    double u3 = u2*u ; double v3 = v2*v ;
    
    double psi0_u = 2.*u3 - 3.*u2 + 1. ;
    double psi0_1mu = -2.*u3 + 3.*u2 ;
    double psi1_u = u3 - 2.*u2 + u ;
    double psi1_1mu = -u3 + u2 ;
    
    double psi0_v = 2.*v3 - 3.*v2 + 1. ;
    double psi0_1mv = -2.*v3 + 3.*v2 ;
    double psi1_v = v3 - 2.*v2 + v ;
    double psi1_1mv = -v3 + v2 ;
    
    f = ftab(i_near, j_near) * psi0_u * psi0_v
      + ftab(i1, j_near) * psi0_1mu * psi0_v 
      + ftab(i_near, j1) * psi0_u * psi0_1mv
      + ftab(i1, j1)  * psi0_1mu * psi0_1mv ;
    
    f += (dfdxtab(i_near, j_near) * psi1_u * psi0_v
	  - dfdxtab(i1, j_near) * psi1_1mu * psi0_v
	  + dfdxtab(i_near, j1) * psi1_u * psi0_1mv
	  - dfdxtab(i1, j1) * psi1_1mu * psi0_1mv) * dx ;
    
    f += (dfdytab(i_near, j_near) * psi0_u * psi1_v
	  + dfdytab(i1, j_near) * psi0_1mu * psi1_v
	  - dfdytab(i_near, j1) * psi0_u * psi1_1mv
	  - dfdytab(i1, j1) * psi0_1mu * psi1_1mv) * dy ;
    
    double dpsi0_u = 6.*(u2 - u) ;
    double dpsi0_1mu = 6.*(u2 - u) ;
    double dpsi1_u = 3.*u2 - 4.*u + 1. ;
    double dpsi1_1mu = 3.*u2 - 2.*u ;
    
    dfdx = (ftab(i_near, j_near) * dpsi0_u * psi0_v
	    - ftab(i1, j_near) * dpsi0_1mu * psi0_v 
	    + ftab(i_near, j1) * dpsi0_u * psi0_1mv
	    - ftab(i1, j1)  * dpsi0_1mu * psi0_1mv ) / dx;
    
    dfdx += (dfdxtab(i_near, j_near) * dpsi1_u * psi0_v
	     + dfdxtab(i1, j_near) * dpsi1_1mu * psi0_v
	     + dfdxtab(i_near, j1) * dpsi1_u * psi0_1mv
	     + dfdxtab(i1, j1) * dpsi1_1mu * psi0_1mv) ;
    
    dfdx += (dfdytab(i_near, j_near) * dpsi0_u * psi1_v
	     - dfdytab(i1, j_near) * dpsi0_1mu * psi1_v
	     - dfdytab(i_near, j1) * dpsi0_u * psi1_1mv
	     + dfdytab(i1, j1) * dpsi0_1mu * psi1_1mv) * dy /dx ;
    
    double dpsi0_v = 6.*(v2 - v) ;
    double dpsi0_1mv = 6.*(v2 - v) ;
    double dpsi1_v = 3.*v2 - 4.*v + 1. ;
    double dpsi1_1mv = 3.*v2 - 2.*v ;

    dfdy = (ftab(i_near, j_near) * psi0_u * dpsi0_v
	    + ftab(i1, j_near) * psi0_1mu * dpsi0_v 
	    - ftab(i_near, j1) * psi0_u * dpsi0_1mv
	    - ftab(i1, j1)  * psi0_1mu * dpsi0_1mv) / dy ;
    
    dfdy += (dfdxtab(i_near, j_near) * psi1_u * dpsi0_v
	     - dfdxtab(i1, j_near) * psi1_1mu * dpsi0_v
	     - dfdxtab(i_near, j1) * psi1_u * dpsi0_1mv
	     + dfdxtab(i1, j1) * psi1_1mu * dpsi0_1mv) * dx / dy ;
    
    dfdy += (dfdytab(i_near, j_near) * psi0_u * dpsi1_v
	     + dfdytab(i1, j_near) * psi0_1mu * dpsi1_v
	     + dfdytab(i_near, j1) * psi0_u * dpsi1_1mv
	     + dfdytab(i1, j1) * psi0_1mu * dpsi1_1mv) ;
  
  return ;
  }

  //--------------------------------------------------------------------
  // Quintic Hermite interpolation using data from the second derivative
  //--------------------------------------------------------------------
  void interpol_herm_2nd_der(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
			     const Tbl& d2ytab, double x, int& i, double& y, 
			     double& dy) {
    
    assert(ytab.dim == xtab.dim) ;
    assert(dytab.dim == xtab.dim) ;	
    assert(d2ytab.dim == xtab.dim) ;	
    
    huntm(xtab, x, i) ;
    
    int i1 = i + 1 ;
    
    double dx = xtab(i1) - xtab(i) ;
    
    double u = (x - xtab(i)) / dx ;
    double u2 = u*u ;
    double u3 = u2*u ;
    double u4 = u2*u2 ;
    double u5 = u3*u2 ;
    
    double v = 1. - u ;
    double v2 = v*v ;
    double v3 = v2*v ;
    double v4 = v2*v2 ;
    double v5 = v3*v2 ;
    
    y =   ytab(i) * ( -6.*u5 + 15.*u4 - 10.*u3 + 1. )
      + ytab(i1) * ( -6.*v5 + 15.*v4 - 10.*v3 + 1. )
      + dytab(i) * dx * ( -3.*u5 + 8.*u4 -6.*u3 + u )
      - dytab(i1) * dx * ( -3.*v5 + 8.*v4 -6.*v3 + v ) 
      + d2ytab(i) * dx*dx * ( -0.5*u5 + 1.5*u4 - 1.5*u3 + 0.5*u2 )
      + d2ytab(i1) * dx*dx * ( -0.5*v5 + 1.5*v4 - 1.5*v3 + 0.5*v2 ) ; 
    
    dy = 30.*( ytab(i) / dx * ( -u4 + 2.*u3 - u2 ) 
	       - ytab(i1) / dx * ( -v4 + 2.*v3 - v2 ) )  
      + dytab(i) * ( -15.*u4 + 32.*u3 - 18.*u2 + 1. ) 
      + dytab(i1) * ( -15.*v4 + 32.*v3 - 18.*v2 + 1. ) 
      + d2ytab(i) * dx * ( -2.5*u4 + 6.*u3 -4.5*u2 + u ) 
      - d2ytab(i1) * dx * ( -2.5*v4 + 6.*v3 -4.5*v2 + v ) ;    
  }

} // End of namespace Lorene