1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
/*
* Hermite interpolation functions.
*
*/
/*
* Copyright (c) 2000-2002 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char interpol_herm_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/Utilities/interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $" ;
/*
* $Id: interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $
* $Log: interpol_herm.C,v $
* Revision 1.13 2015/06/15 15:08:22 j_novak
* New file interpol_bifluid for interpolation of 2-fluid EoSs
*
* Revision 1.12 2015/06/10 14:39:18 a_sourie
* New class Eos_bf_tabul for tabulated 2-fluid EoSs and associated functions for the computation of rotating stars with such EoSs.
*
* Revision 1.11 2015/01/27 14:22:38 j_novak
* New methods in Eos_tabul to correct for EoS themro consistency (optional).
*
* Revision 1.10 2014/10/13 08:53:32 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.9 2013/12/12 16:07:30 j_novak
* interpol_herm_2d outputs df/dx, used to get the magnetization.
*
* Revision 1.8 2012/09/04 14:53:28 j_novak
* Replacement of the FORTRAN version of huntm by a C one.
*
* Revision 1.7 2011/10/04 16:05:19 j_novak
* Update of Eos_mag class. Suppression of loge, re-definition of the derivatives
* and use of interpol_herm_2d.
*
* Revision 1.6 2011/10/03 13:44:45 j_novak
* Updated the y-derivative for the 2D version
*
* Revision 1.5 2011/09/27 15:38:11 j_novak
* New function for 2D interpolation added. The computation of 1st derivative is
* still missing.
*
* Revision 1.4 2003/11/21 16:14:51 m_bejger
* Added the linear interpolation
*
* Revision 1.3 2003/05/15 09:42:12 e_gourgoulhon
* Added the new function interpol_herm_der
*
* Revision 1.2 2002/09/09 13:00:40 e_gourgoulhon
* Modification of declaration of Fortran 77 prototypes for
* a better portability (in particular on IBM AIX systems):
* All Fortran subroutine names are now written F77_* and are
* defined in the new file C++/Include/proto_f77.h.
*
* Revision 1.1.1.1 2001/11/20 15:19:29 e_gourgoulhon
* LORENE
*
* Revision 2.0 2000/11/22 19:31:42 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Non_class_members/Utilities/interpol_herm.C,v 1.13 2015/06/15 15:08:22 j_novak Exp $
*
*/
// Headers Lorene
#include "tbl.h"
namespace Lorene {
//---------------------------------------------------------------
// Value bracketting in an ordered table (from Numerical Recipes)
//---------------------------------------------------------------
void huntm(const Tbl& xx, double& x, int& i_low) {
assert (xx.get_etat() == ETATQCQ) ;
int nx = xx.get_taille() ;
bool ascend = ( xx(nx-1) > xx(0) ) ;
int i_hi ;
if ( (i_low < 0)||(i_low>=nx) ) {
i_low = -1 ;
i_hi = nx ;
}
else {
int inc = 1 ;
if ( (x >= xx(i_low)) == ascend ) {
if (i_low == nx -1) return ;
i_hi = i_low + 1 ;
while ( (x >= xx(i_hi)) == ascend ) {
i_low = i_hi ;
inc += inc ;
i_hi = i_low + inc ;
if (i_hi >= nx) {
i_hi = nx ;
break ;
}
}
} else {
if (i_low == 0) {
i_low = -1 ;
return ;
}
i_hi = i_low-- ;
while ( (x < xx(i_low)) == ascend ) {
i_hi = i_low ;
inc += inc ;
if ( inc >= i_hi ) {
i_low = 0 ;
break ;
}
else i_low = i_hi - inc ;
}
}
}
while ( (i_hi - i_low) > 1) {
int i_med = (i_hi + i_low) / 2 ;
if ( (x>=xx(i_med)) == ascend ) i_low = i_med ;
else i_hi = i_med ;
}
if (x == xx(nx-1)) i_low = nx-2 ;
if (x == xx(0)) i_low = 0 ;
return ;
}
//---------------------
// Linear interpolation
//---------------------
void interpol_linear(const Tbl& xtab, const Tbl& ytab,
double x, int& i, double& y) {
assert(ytab.dim == xtab.dim) ;
//assert(dytab.dim == xtab.dim) ;
huntm(xtab, x, i) ;
int i1 = i + 1 ;
// double dx = xtab(i1) - xtab(i) ;
double y1 = ytab(i) ;
double y2 = ytab(i1) ;
double x1 = xtab(i) ;
double x2 = xtab(i1) ;
double x12 = x1-x2 ;
double a = (y1-y2)/x12 ;
double b = (x1*y2-y1*x2)/x12 ;
y = x*a+b ;
}
//------------------------------------------------------------
// Cubic Hermite interpolation, returning the first derivative
//------------------------------------------------------------
void interpol_herm(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
double x, int& i, double& y, double& dy) {
assert(ytab.dim == xtab.dim) ;
assert(dytab.dim == xtab.dim) ;
huntm(xtab, x, i) ;
int i1 = i + 1 ;
double dx = xtab(i1) - xtab(i) ;
double u = (x - xtab(i)) / dx ;
double u2 = u*u ;
double u3 = u2*u ;
y = ytab(i) * ( 2.*u3 - 3.*u2 + 1.)
+ ytab(i1) * ( 3.*u2 - 2.*u3)
+ dytab(i) * dx * ( u3 - 2.*u2 + u )
- dytab(i1) * dx * ( u2 - u3 ) ;
dy = 6. * ( ytab(i) / dx * ( u2 - u )
- ytab(i1) / dx * ( u2 - u ) )
+ dytab(i) * ( 3.*u2 - 4.*u + 1. )
+ dytab(i1) * ( 3.*u2 - 2.*u ) ;
}
//-------------------------------------------------------------
// Cubic Hermite interpolation, returning the second derivative
//-------------------------------------------------------------
void interpol_herm_der(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
double x, int& i, double& y, double& dy, double& ddy) {
assert(ytab.dim == xtab.dim) ;
assert(dytab.dim == xtab.dim) ;
huntm(xtab, x, i) ;
// i-- ; // Fortran --> C
int i1 = i + 1 ;
double dx = xtab(i1) - xtab(i) ;
double u = (x - xtab(i)) / dx ;
double u2 = u*u ;
double u3 = u2*u ;
y = ytab(i) * ( 2.*u3 - 3.*u2 + 1.)
+ ytab(i1) * ( 3.*u2 - 2.*u3)
+ dytab(i) * dx * ( u3 - 2.*u2 + u )
- dytab(i1) * dx * ( u2 - u3 ) ;
dy = 6. * ( ytab(i) - ytab(i1) ) * ( u2 - u ) / dx
+ dytab(i) * ( 3.*u2 - 4.*u + 1. )
+ dytab(i1) * ( 3.*u2 - 2.*u ) ;
ddy = 6 * ( ( ytab(i) - ytab(i1) ) * ( 2.*u - 1. ) / dx
+ dytab(i) * (6.*u - 4.)
+ dytab(i1) * (6.*u - 2.) ) / dx ;
}
//----------------------------------------------
// Bi-cubic Hermite interpolation, for 2D arrays
//----------------------------------------------
void interpol_herm_2d(const Tbl& xtab, const Tbl& ytab, const Tbl& ftab,
const Tbl& dfdxtab, const Tbl& dfdytab, const Tbl&
d2fdxdytab, double x, double y, double& f, double&
dfdx, double& dfdy) {
assert(ytab.dim == xtab.dim) ;
assert(ftab.dim == xtab.dim) ;
assert(dfdxtab.dim == xtab.dim) ;
assert(dfdytab.dim == xtab.dim) ;
assert(d2fdxdytab.dim == xtab.dim) ;
int nbp1, nbp2;
nbp1 = xtab.get_dim(0);
nbp2 = xtab.get_dim(1);
int i_near = 0 ;
int j_near = 0 ;
while ((xtab(i_near,0) <= x) && (nbp2 > i_near)) {
i_near++;
}
if (i_near != 0) {
i_near-- ;
}
j_near = 0;
while ((ytab(i_near,j_near) < y) && (nbp1 > j_near)) {
j_near++ ;
}
if (j_near != 0) {
j_near-- ;
}
int i1 = i_near+1 ; int j1 = j_near+1 ;
double dx = xtab(i1, j_near) - xtab(i_near, j_near) ;
double dy = ytab(i_near, j1) - ytab(i_near, j_near) ;
double u = (x - xtab(i_near, j_near)) / dx ;
double v = (y - ytab(i_near, j_near)) / dy ;
double u2 = u*u ; double v2 = v*v ;
double u3 = u2*u ; double v3 = v2*v ;
double psi0_u = 2.*u3 - 3.*u2 + 1. ;
double psi0_1mu = -2.*u3 + 3.*u2 ;
double psi1_u = u3 - 2.*u2 + u ;
double psi1_1mu = -u3 + u2 ;
double psi0_v = 2.*v3 - 3.*v2 + 1. ;
double psi0_1mv = -2.*v3 + 3.*v2 ;
double psi1_v = v3 - 2.*v2 + v ;
double psi1_1mv = -v3 + v2 ;
f = ftab(i_near, j_near) * psi0_u * psi0_v
+ ftab(i1, j_near) * psi0_1mu * psi0_v
+ ftab(i_near, j1) * psi0_u * psi0_1mv
+ ftab(i1, j1) * psi0_1mu * psi0_1mv ;
f += (dfdxtab(i_near, j_near) * psi1_u * psi0_v
- dfdxtab(i1, j_near) * psi1_1mu * psi0_v
+ dfdxtab(i_near, j1) * psi1_u * psi0_1mv
- dfdxtab(i1, j1) * psi1_1mu * psi0_1mv) * dx ;
f += (dfdytab(i_near, j_near) * psi0_u * psi1_v
+ dfdytab(i1, j_near) * psi0_1mu * psi1_v
- dfdytab(i_near, j1) * psi0_u * psi1_1mv
- dfdytab(i1, j1) * psi0_1mu * psi1_1mv) * dy ;
f += (d2fdxdytab(i_near, j_near) * psi1_u * psi1_v
- d2fdxdytab(i1, j_near) * psi1_1mu * psi1_v
- d2fdxdytab(i_near, j1) * psi1_u * psi1_1mv
+ d2fdxdytab(i1, j1) * psi1_1mu * psi1_1mv) * dx * dy ;
double dpsi0_u = 6.*(u2 - u) ;
double dpsi0_1mu = 6.*(u2 - u) ;
double dpsi1_u = 3.*u2 - 4.*u + 1. ;
double dpsi1_1mu = 3.*u2 - 2.*u ;
dfdx = (ftab(i_near, j_near) * dpsi0_u * psi0_v
- ftab(i1, j_near) * dpsi0_1mu * psi0_v
+ ftab(i_near, j1) * dpsi0_u * psi0_1mv
- ftab(i1, j1) * dpsi0_1mu * psi0_1mv ) / dx;
dfdx += (dfdxtab(i_near, j_near) * dpsi1_u * psi0_v
+ dfdxtab(i1, j_near) * dpsi1_1mu * psi0_v
+ dfdxtab(i_near, j1) * dpsi1_u * psi0_1mv
+ dfdxtab(i1, j1) * dpsi1_1mu * psi0_1mv) ;
dfdx += (dfdytab(i_near, j_near) * dpsi0_u * psi1_v
- dfdytab(i1, j_near) * dpsi0_1mu * psi1_v
- dfdytab(i_near, j1) * dpsi0_u * psi1_1mv
+ dfdytab(i1, j1) * dpsi0_1mu * psi1_1mv) * dy /dx ;
dfdx += (d2fdxdytab(i_near, j_near) * dpsi1_u * psi1_v
+ d2fdxdytab(i1, j_near) * dpsi1_1mu * psi1_v
- d2fdxdytab(i_near, j1) * dpsi1_u * psi1_1mv
- d2fdxdytab(i1, j1) * dpsi1_1mu * psi1_1mv) * dy ;
double dpsi0_v = 6.*(v2 - v) ;
double dpsi0_1mv = 6.*(v2 - v) ;
double dpsi1_v = 3.*v2 - 4.*v + 1. ;
double dpsi1_1mv = 3.*v2 - 2.*v ;
dfdy = (ftab(i_near, j_near) * psi0_u * dpsi0_v
+ ftab(i1, j_near) * psi0_1mu * dpsi0_v
- ftab(i_near, j1) * psi0_u * dpsi0_1mv
- ftab(i1, j1) * psi0_1mu * dpsi0_1mv) / dy ;
dfdy += (dfdxtab(i_near, j_near) * psi1_u * dpsi0_v
- dfdxtab(i1, j_near) * psi1_1mu * dpsi0_v
- dfdxtab(i_near, j1) * psi1_u * dpsi0_1mv
+ dfdxtab(i1, j1) * psi1_1mu * dpsi0_1mv) * dx / dy ;
dfdy += (dfdytab(i_near, j_near) * psi0_u * dpsi1_v
+ dfdytab(i1, j_near) * psi0_1mu * dpsi1_v
+ dfdytab(i_near, j1) * psi0_u * dpsi1_1mv
+ dfdytab(i1, j1) * psi0_1mu * dpsi1_1mv) ;
dfdy += (d2fdxdytab(i_near, j_near) * psi1_u * dpsi1_v
- d2fdxdytab(i1, j_near) * psi1_1mu * dpsi1_v
+ d2fdxdytab(i_near, j1) * psi1_u * dpsi1_1mv
- d2fdxdytab(i1, j1) * psi1_1mu * dpsi1_1mv) * dx ;
return ;
}
void interpol_herm_2d_sans(const Tbl& xtab, const Tbl& ytab, const Tbl& ftab,
const Tbl& dfdxtab, const Tbl& dfdytab, double x,
double y, double& f, double& dfdx, double& dfdy) {
assert(ytab.dim == xtab.dim) ;
assert(ftab.dim == xtab.dim) ;
assert(dfdxtab.dim == xtab.dim) ;
assert(dfdytab.dim == xtab.dim) ;
int nbp1, nbp2;
nbp1 = xtab.get_dim(0);
nbp2 = xtab.get_dim(1);
int i_near = 0 ;
int j_near = 0 ;
while ((xtab(i_near,0) <= x) && (nbp2 > i_near)) {
i_near++;
}
if (i_near != 0) {
i_near-- ;
}
j_near = 0;
while ((ytab(i_near,j_near) < y) && (nbp1 > j_near)) {
j_near++ ;
}
if (j_near != 0) {
j_near-- ;
}
int i1 = i_near+1 ; int j1 = j_near+1 ;
double dx = xtab(i1, j_near) - xtab(i_near, j_near) ;
double dy = ytab(i_near, j1) - ytab(i_near, j_near) ;
double u = (x - xtab(i_near, j_near)) / dx ;
double v = (y - ytab(i_near, j_near)) / dy ;
double u2 = u*u ; double v2 = v*v ;
double u3 = u2*u ; double v3 = v2*v ;
double psi0_u = 2.*u3 - 3.*u2 + 1. ;
double psi0_1mu = -2.*u3 + 3.*u2 ;
double psi1_u = u3 - 2.*u2 + u ;
double psi1_1mu = -u3 + u2 ;
double psi0_v = 2.*v3 - 3.*v2 + 1. ;
double psi0_1mv = -2.*v3 + 3.*v2 ;
double psi1_v = v3 - 2.*v2 + v ;
double psi1_1mv = -v3 + v2 ;
f = ftab(i_near, j_near) * psi0_u * psi0_v
+ ftab(i1, j_near) * psi0_1mu * psi0_v
+ ftab(i_near, j1) * psi0_u * psi0_1mv
+ ftab(i1, j1) * psi0_1mu * psi0_1mv ;
f += (dfdxtab(i_near, j_near) * psi1_u * psi0_v
- dfdxtab(i1, j_near) * psi1_1mu * psi0_v
+ dfdxtab(i_near, j1) * psi1_u * psi0_1mv
- dfdxtab(i1, j1) * psi1_1mu * psi0_1mv) * dx ;
f += (dfdytab(i_near, j_near) * psi0_u * psi1_v
+ dfdytab(i1, j_near) * psi0_1mu * psi1_v
- dfdytab(i_near, j1) * psi0_u * psi1_1mv
- dfdytab(i1, j1) * psi0_1mu * psi1_1mv) * dy ;
double dpsi0_u = 6.*(u2 - u) ;
double dpsi0_1mu = 6.*(u2 - u) ;
double dpsi1_u = 3.*u2 - 4.*u + 1. ;
double dpsi1_1mu = 3.*u2 - 2.*u ;
dfdx = (ftab(i_near, j_near) * dpsi0_u * psi0_v
- ftab(i1, j_near) * dpsi0_1mu * psi0_v
+ ftab(i_near, j1) * dpsi0_u * psi0_1mv
- ftab(i1, j1) * dpsi0_1mu * psi0_1mv ) / dx;
dfdx += (dfdxtab(i_near, j_near) * dpsi1_u * psi0_v
+ dfdxtab(i1, j_near) * dpsi1_1mu * psi0_v
+ dfdxtab(i_near, j1) * dpsi1_u * psi0_1mv
+ dfdxtab(i1, j1) * dpsi1_1mu * psi0_1mv) ;
dfdx += (dfdytab(i_near, j_near) * dpsi0_u * psi1_v
- dfdytab(i1, j_near) * dpsi0_1mu * psi1_v
- dfdytab(i_near, j1) * dpsi0_u * psi1_1mv
+ dfdytab(i1, j1) * dpsi0_1mu * psi1_1mv) * dy /dx ;
double dpsi0_v = 6.*(v2 - v) ;
double dpsi0_1mv = 6.*(v2 - v) ;
double dpsi1_v = 3.*v2 - 4.*v + 1. ;
double dpsi1_1mv = 3.*v2 - 2.*v ;
dfdy = (ftab(i_near, j_near) * psi0_u * dpsi0_v
+ ftab(i1, j_near) * psi0_1mu * dpsi0_v
- ftab(i_near, j1) * psi0_u * dpsi0_1mv
- ftab(i1, j1) * psi0_1mu * dpsi0_1mv) / dy ;
dfdy += (dfdxtab(i_near, j_near) * psi1_u * dpsi0_v
- dfdxtab(i1, j_near) * psi1_1mu * dpsi0_v
- dfdxtab(i_near, j1) * psi1_u * dpsi0_1mv
+ dfdxtab(i1, j1) * psi1_1mu * dpsi0_1mv) * dx / dy ;
dfdy += (dfdytab(i_near, j_near) * psi0_u * dpsi1_v
+ dfdytab(i1, j_near) * psi0_1mu * dpsi1_v
+ dfdytab(i_near, j1) * psi0_u * dpsi1_1mv
+ dfdytab(i1, j1) * psi0_1mu * dpsi1_1mv) ;
return ;
}
//--------------------------------------------------------------------
// Quintic Hermite interpolation using data from the second derivative
//--------------------------------------------------------------------
void interpol_herm_2nd_der(const Tbl& xtab, const Tbl& ytab, const Tbl& dytab,
const Tbl& d2ytab, double x, int& i, double& y,
double& dy) {
assert(ytab.dim == xtab.dim) ;
assert(dytab.dim == xtab.dim) ;
assert(d2ytab.dim == xtab.dim) ;
huntm(xtab, x, i) ;
int i1 = i + 1 ;
double dx = xtab(i1) - xtab(i) ;
double u = (x - xtab(i)) / dx ;
double u2 = u*u ;
double u3 = u2*u ;
double u4 = u2*u2 ;
double u5 = u3*u2 ;
double v = 1. - u ;
double v2 = v*v ;
double v3 = v2*v ;
double v4 = v2*v2 ;
double v5 = v3*v2 ;
y = ytab(i) * ( -6.*u5 + 15.*u4 - 10.*u3 + 1. )
+ ytab(i1) * ( -6.*v5 + 15.*v4 - 10.*v3 + 1. )
+ dytab(i) * dx * ( -3.*u5 + 8.*u4 -6.*u3 + u )
- dytab(i1) * dx * ( -3.*v5 + 8.*v4 -6.*v3 + v )
+ d2ytab(i) * dx*dx * ( -0.5*u5 + 1.5*u4 - 1.5*u3 + 0.5*u2 )
+ d2ytab(i1) * dx*dx * ( -0.5*v5 + 1.5*v4 - 1.5*v3 + 0.5*v2 ) ;
dy = 30.*( ytab(i) / dx * ( -u4 + 2.*u3 - u2 )
- ytab(i1) / dx * ( -v4 + 2.*v3 - v2 ) )
+ dytab(i) * ( -15.*u4 + 32.*u3 - 18.*u2 + 1. )
+ dytab(i1) * ( -15.*v4 + 32.*v3 - 18.*v2 + 1. )
+ d2ytab(i) * dx * ( -2.5*u4 + 6.*u3 -4.5*u2 + u )
- d2ytab(i1) * dx * ( -2.5*v4 + 6.*v3 -4.5*v2 + v ) ;
}
} // End of namespace Lorene
|