1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*
* Copyright (c) 2003 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char ope_poisson_C[] = "$Header: /cvsroot/Lorene/C++/Source/Ope_elementary/ope_poisson.C,v 1.3 2014/10/13 08:53:33 j_novak Exp $" ;
/*
* $Id: ope_poisson.C,v 1.3 2014/10/13 08:53:33 j_novak Exp $
* $Log: ope_poisson.C,v $
* Revision 1.3 2014/10/13 08:53:33 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.2 2004/06/14 15:07:11 j_novak
* New methods for the construction of the elliptic operator appearing in
* the vector Poisson equation (acting on eta).
*
* Revision 1.1 2003/12/11 14:48:50 p_grandclement
* Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
*
*
* $Header: /cvsroot/Lorene/C++/Source/Ope_elementary/ope_poisson.C,v 1.3 2014/10/13 08:53:33 j_novak Exp $
*
*/
#include "proto.h"
#include "ope_elementary.h"
// Standard constructor :
namespace Lorene {
Ope_poisson::Ope_poisson (int nbr, int baser, double alf, double bet, int lq, int dz):
Ope_elementary(nbr, baser, alf, bet), l_quant (lq),
dzpuis (dz) {
assert ((dzpuis==2) || (dzpuis==3) || (dzpuis==4)) ;
}
// Constructor by copy :
Ope_poisson::Ope_poisson (const Ope_poisson& so) : Ope_elementary(so),
l_quant (so.l_quant), dzpuis (so.dzpuis) {
assert ((dzpuis==2) || (dzpuis==3) || (dzpuis==4)) ;
}
// Destructor :
Ope_poisson::~Ope_poisson() {}
// True functions :
void Ope_poisson::do_ope_mat() const {
if (ope_mat != 0x0)
delete ope_mat ;
ope_mat = new Matrice
(laplacien_mat(nr, l_quant, beta/alpha, dzpuis, base_r)) ;
}
void Ope_poisson::do_ope_cl() const {
if (ope_mat == 0x0)
do_ope_mat() ;
if (ope_cl != 0x0)
delete ope_cl ;
ope_cl = new Matrice
(combinaison(*ope_mat, l_quant, beta/alpha, dzpuis, base_r)) ;
}
void Ope_poisson::do_non_dege() const {
if (ope_cl == 0x0)
do_ope_cl() ;
if (non_dege != 0x0)
delete non_dege ;
non_dege = new Matrice
(prepa_nondege(*ope_cl, l_quant, beta/alpha, dzpuis, base_r)) ;
}
Tbl Ope_poisson::get_solp (const Tbl& so) const {
if (non_dege == 0x0)
do_non_dege() ;
Tbl res(solp(*ope_mat, *non_dege, alpha, beta, so, dzpuis, base_r)) ;
Tbl valeurs (val_solp (res, alpha, base_r)) ;
sp_plus = valeurs(0) ;
sp_minus = valeurs(1) ;
dsp_plus = valeurs(2) ;
dsp_minus = valeurs(3) ;
return res ;
}
Tbl Ope_poisson::get_solh() const {
Tbl valeurs (val_solh (l_quant, alpha, beta, base_r)) ;
if (valeurs.get_ndim() == 2) {
// cas 2 sh
s_one_plus = valeurs(0,0) ;
s_one_minus = valeurs(0,1) ;
ds_one_plus = valeurs(0,2) ;
ds_one_minus = valeurs(0,3) ;
s_two_plus = valeurs(1,0) ;
s_two_minus = valeurs(1,1) ;
ds_two_plus = valeurs(1,2) ;
ds_two_minus = valeurs(1,3) ;
}
else {
// cas 1 sh :
s_one_plus = valeurs(0) ;
s_one_minus = valeurs(1) ;
ds_one_plus = valeurs(2) ;
ds_one_minus = valeurs(3) ;
}
return solh(nr, l_quant, beta/alpha, base_r) ;
}
void Ope_poisson::inc_l_quant() {
if (ope_mat != 0x0) {
delete ope_mat ;
ope_mat = 0x0 ;
}
if (ope_cl != 0x0) {
delete ope_cl ;
ope_cl = 0x0 ;
}
if (non_dege != 0x0) {
delete non_dege ;
non_dege = 0x0 ;
}
l_quant ++ ;
}
void Ope_poisson::dec_l_quant() {
assert(l_quant > 0) ;
if (ope_mat != 0x0) {
delete ope_mat ;
ope_mat = 0x0 ;
}
if (ope_cl != 0x0) {
delete ope_cl ;
ope_cl = 0x0 ;
}
if (non_dege != 0x0) {
delete non_dege ;
non_dege = 0x0 ;
}
l_quant -- ;
}
}
|