File: scalar_asymptot.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (163 lines) | stat: -rw-r--r-- 4,546 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 *  Function Scalar::asymptot
 *
 */

/*
 *   Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
 *
 *   Copyright (c) 1999-2002 Eric Gourgoulhon (for previous class Cmp)
 *   Copyright (c) 1999-2001 Philippe Grandclement (for previous class Cmp)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char scalar_asymptot_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_asymptot.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $" ;

/*
 * $Id: scalar_asymptot.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
 * $Log: scalar_asymptot.C,v $
 * Revision 1.5  2014/10/13 08:53:46  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2014/10/06 15:16:15  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.3  2004/02/21 17:05:14  e_gourgoulhon
 * Method Scalar::point renamed Scalar::val_grid_point.
 * Method Scalar::set_point renamed Scalar::set_grid_point.
 *
 * Revision 1.2  2003/10/08 14:24:09  j_novak
 * replaced mult_r_zec with mult_r_ced
 *
 * Revision 1.1  2003/09/25 07:18:00  j_novak
 * Method asymptot implemented.
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_asymptot.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene
#include "tensor.h"

namespace Lorene {
Valeur** Scalar::asymptot(int n0, const int flag) const {
    
    assert(n0 >= 0) ; 
    const Mg3d& mg = *(mp->get_mg()) ; 
    int nz = mg.get_nzone() ; 
    int nzm1 = nz-1 ; 
    assert(mg.get_type_r(nzm1) == UNSURR) ; 
    int np = mg.get_np(nzm1) ; 
    int nt = mg.get_nt(nzm1) ; 
    int nr = mg.get_nr(nzm1) ; 
    int nrm1 = nr-1 ; 
        
    Valeur** vu = new Valeur*[n0+1] ;
    for (int h=0; h<=n0; h++) {
	vu[h] = new Valeur(mg.get_angu()) ; 
    }

    Scalar uu = *this ; 

    int precis = 2 ; 

    // The terms 1/r^h with h < dzpuis are null :
    // -----------------------------------------
    for (int h=0; h<dzpuis; h++) {

	vu[h]->set_etat_zero() ; 	
				
    }

    // Terms 1/r^h with h >= dzpuis :
    // -----------------------------
    for (int h=dzpuis; h<=n0; h++) {
	
	// Value on the sphere S^2 at infinity
	// -----------------------------------	
	vu[h]->set_etat_c_qcq() ; 
	vu[h]->c->set_etat_qcq() ; 
	for (int l=0; l<nzm1; l++) {
	    vu[h]->c->t[l]->set_etat_zero() ; 
	}
	vu[h]->c->t[nzm1]->set_etat_qcq() ; 

	for (int k=0; k<np; k++) {
	    for (int j=0; j<nt; j++) {
		vu[h]->set(nzm1, k, j, 0) = uu.val_grid_point(nzm1, k, j, nrm1) ; 
	    }
	}
	
	vu[h]->set_base( uu.va.base ) ; 
	
	// Printing
	// --------
	if (flag != 0) {
	    cout << "Term in 1/r^" << h << endl ; 
	    cout << "-------------" << endl ; 

	    double ndec = 0 ; 
	    double vmin = (*vu[h])(nzm1, 0, 0, 0) ; 
	    double vmax = vmin ; 

	    cout << "            Values at the point (phi_k, theta_j) : " << endl ; 
	    cout.precision(precis) ;
	    cout.setf(ios::showpoint) ;
	    for (int k=0; k<np; k++) {
		cout <<  " k=" << k << " : "  ;
	    for (int j=0; j<nt; j++) {
		double xx = (*vu[h])(nzm1, k, j, 0) ;
		cout <<  " " << setw(precis) << xx ;	
		ndec += fabs(xx) ; 	
		vmin = ( xx < vmin ) ? xx : vmin ; 
		vmax = ( xx > vmax ) ? xx : vmax ; 
	    }
	    cout << endl;
	}
	ndec /= np*nt ; 
	cout << "Minimum value on S^2 : " << vmin << endl ; 
	cout << "Maximum value on S^2 : " << vmax << endl ; 
	cout << "L^1 norm on S^2     : " << ndec << endl ;  
	}		
	// The value at infinity is substracted
	// ------------------------------------
	for (int k=0; k<np; k++) {
	    for (int j=0; j<nt; j++) {
		double v_inf = (*vu[h])(nzm1, k, j, 0) ; 
		for (int i=0; i<nr; i++) {
		   uu.set_grid_point(nzm1, k, j, i) -= v_inf ;  
		}
	    }
	}
	
	// Mutliplication by r
	// -------------------
	
	uu.mult_r_ced() ; 
	
    } // End of loop on h  (development order)	   
	
    return vu ; 
    
}
}