File: scalar_import_symy.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (560 lines) | stat: -rw-r--r-- 15,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
 * Member function of the Scalar class for initiating a Scalar from 
 * a Scalar defined on another mapping.
 * Case where both Scalar's are symmetric with respect to their y=0 plane.
 */

/*
 *   Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
 *   Copyright (c) 1999-2001 Eric Gourgoulhon (Cmp version)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char scalar_import_symy_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $" ;


/*
 * $Id: scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
 * $Log: scalar_import_symy.C,v $
 * Revision 1.5  2014/10/13 08:53:46  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2014/10/06 15:16:15  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.3  2003/10/10 15:57:29  j_novak
 * Added the state one (ETATUN) to the class Scalar
 *
 * Revision 1.2  2003/10/01 13:04:44  e_gourgoulhon
 * The method Tensor::get_mp() returns now a reference (and not
 * a pointer) onto a mapping.
 *
 * Revision 1.1  2003/09/25 09:07:05  j_novak
 * Added the functions for importing from another mapping (to be tested).
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
 *
 */



// Headers C
#include <cmath>

// Headers Lorene
#include "tensor.h"
#include "param.h"
#include "nbr_spx.h"

			//-------------------------------//
			//  Importation in all domains   //
			//-------------------------------//

namespace Lorene {
void Scalar::import_symy(const Scalar& ci) {
    
    int nz = mp->get_mg()->get_nzone() ; 
    
    import_symy(nz, ci) ; 
        
}

			//--------------------------------------//
			//  Importation in inner domains only   //
			//--------------------------------------//

void Scalar::import_symy(int nzet, const Scalar& cm_d) {
    
    const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping

    // Trivial case : mappings identical !
    // -----------------------------------
    
    if (mp_d == mp) {
	*this = cm_d ; 
	return ; 
    }
    
    // Relative orientation of the two mappings
    // ----------------------------------------
 
    int align_rel = (mp->get_bvect_cart()).get_align()  
		    * (mp_d->get_bvect_cart()).get_align() ;
		    
    switch (align_rel) {

	case 1 : {  // the two mappings have aligned Cartesian axis
	    import_align_symy(nzet, cm_d) ; 
	    break ; 
	}

	case -1 : {  // the two mappings have anti-aligned Cartesian axis
	    import_anti_symy(nzet, cm_d) ; 
	    break ; 
	}

	default : {  
	    cout << "Scalar::import_symy : unexpected value of align_rel : " 
		 << align_rel << endl ; 
	    abort() ; 
	    break ; 
	}

    }
    
}    


		//-----------------------------------------//
		//   Case of Cartesian axis anti-aligned   //
		//-----------------------------------------//


void Scalar::import_anti_symy(int nzet, const Scalar& cm_d) {
    
    // Trivial case : null Scalar
    // ------------------------
    
    if (cm_d.get_etat() == ETATZERO) {
	set_etat_zero() ; 
	return ; 
    }
    if (cm_d.get_etat() == ETATUN) {
	set_etat_one() ; 
	return ; 
    }

    const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping

    // Protections
    // -----------
    int align = (mp->get_bvect_cart()).get_align() ;

    assert( align  * (mp_d->get_bvect_cart()).get_align() == -1 ) ; 
    
    assert(cm_d.get_etat() == ETATQCQ) ;

    if (cm_d.get_dzpuis() != 0) {
	cout << 
	"Scalar::import_anti_symy : the dzpuis of the Scalar to be imported"
	<< "  must be zero !" << endl ; 
	abort() ; 
    }


    const Mg3d* mg_a = mp->get_mg() ; 
    assert(mg_a->get_type_p() == NONSYM) ; 

    int nz_a = mg_a->get_nzone() ; 
    assert(nzet <= nz_a) ;     

    const Valeur& va_d = cm_d.get_spectral_va() ; 
    va_d.coef() ;		// The coefficients are required
    

    // Preparations for storing the result in *this 
    // --------------------------------------------
    del_t() ;	// delete all previously computed derived quantities
    
    set_etat_qcq() ;		// Set the state to ETATQCQ
    
    va.set_etat_c_qcq() ;	// Allocates the memory for the Mtbl va.c
				//  if it does not exist already
    va.c->set_etat_qcq() ;	// Allocates the memory for the Tbl's in each
				//  domain if they do not exist already


    // Departure (x,y,z) coordinates of the origin of the Arrival mapping :

    double xx_a, yy_a, zz_a ; 
    if (align == 1) {
	xx_a = mp_d->get_ori_x() - mp->get_ori_x() ; 
	yy_a = mp_d->get_ori_y() - mp->get_ori_y() ; 
    }
    else {
	xx_a = mp->get_ori_x() - mp_d->get_ori_x() ; 
	yy_a = mp->get_ori_y() - mp_d->get_ori_y() ; 
    }
    zz_a = mp->get_ori_z() - mp_d->get_ori_z() ; 

    
    // r, theta, phi, x, y and z on the Arrival mapping 
    //  update of the corresponding Coord's if necessary
    
    if ( (mp->r).c == 0x0 ) (mp->r).fait() ; 
    if ( (mp->tet).c == 0x0 ) (mp->tet).fait() ; 
    if ( (mp->phi).c == 0x0 ) (mp->phi).fait() ; 
    if ( (mp->x).c == 0x0 ) (mp->x).fait() ; 
    if ( (mp->y).c == 0x0 ) (mp->y).fait() ; 
    if ( (mp->z).c == 0x0 ) (mp->z).fait() ; 

    const Mtbl* mr_a = (mp->r).c ; 
    const Mtbl* mtet_a = (mp->tet).c ; 
    const Mtbl* mphi_a = (mp->phi).c ; 
    const Mtbl* mx_a = (mp->x).c ;
    const Mtbl* my_a = (mp->y).c ;
    const Mtbl* mz_a = (mp->z).c ;

    Param par_precis ;	    // Required precision in the method Map::val_lx
    int nitermax = 100 ;    // Maximum number of iteration in the secant method
    int niter ; 
    double precis = 1e-15 ; // Absolute precision in the secant method
    par_precis.add_int(nitermax) ;	
    par_precis.add_int_mod(niter) ; 
    par_precis.add_double(precis) ; 


    // Loop of the Arrival domains where the computation is to be performed
    // --------------------------------------------------------------------
    
    for (int l=0; l < nzet; l++) {
	
	int nr = mg_a->get_nr(l) ;
	int nt = mg_a->get_nt(l) ;
	int np = mg_a->get_np(l) ;
	
	
	const double* pr_a = mr_a->t[l]->t ;	  // Pointer on the values of r
	const double* ptet_a = mtet_a->t[l]->t ;  // Pointer on the values of theta
	const double* pphi_a = mphi_a->t[l]->t ;  // Pointer on the values of phi
	const double* px_a = mx_a->t[l]->t ;	  // Pointer on the values of X
	const double* py_a = my_a->t[l]->t ;	  // Pointer on the values of Y
	const double* pz_a = mz_a->t[l]->t ;	  // Pointer on the values of Z
	
	(va.c->t[l])->set_etat_qcq() ;	     // Allocates the array of double to
					     //  store the result 
	double* ptx = (va.c->t[l])->t ;	     // Pointer on the allocated array
	
	
	// Loop on half the grid points in the considered arrival domain
	// (the other half will be obtained by symmetry with respect to
	//  the y=0 plane). 
		
	for (int k=0 ; k<np/2+1 ; k++) {    // np/2+1 : half the grid
	    for (int j=0 ; j<nt ; j++) {
		for (int i=0 ; i<nr ; i++) {

		    double r = *pr_a ; 
		    double rd, tetd, phid ;
		    if (r == __infinity) {
			rd = r ;
			tetd = *ptet_a ;
			phid = *pphi_a + M_PI ;
			if (phid < 0) phid += 2*M_PI ;
		    }
		    else {

			// Cartesian coordinates on the Departure mapping
			double xd = - *px_a + xx_a ; 
			double yd = - *py_a + yy_a ; 
			double zd = *pz_a + zz_a ; 

			// Spherical coordinates on the Departure mapping
			double rhod2 = xd*xd + yd*yd ; 
			double rhod = sqrt( rhod2 ) ;
			rd = sqrt(rhod2 + zd*zd) ;
			tetd = atan2(rhod, zd) ;
			phid = atan2(yd, xd) ; 
			if (phid < 0) phid += 2*M_PI ;
		    }		    


		    // NB: to increase the efficiency, the method Scalar::val_point
		    //  is not invoked; the method Mtbl_cf::val_point is 
		    //  called directly instead. 

		    // Value of the grid coordinates (l,xi) corresponding to
		    //  (rd,tetd,phid) :
		    
		    int ld ;	    // domain index
		    double xxd ;    // radial coordinate xi in [0,1] or [-1,1]
		    mp_d->val_lx(rd, tetd, phid, par_precis, ld, xxd) ;

		    // Value of the Departure Scalar at the obtained point:
		    *ptx = va_d.c_cf->val_point_symy(ld, xxd, tetd, phid) ;

		    // Next point : 
		    ptx++ ;   
		    pr_a++ ;  
		    ptet_a++ ;  
		    pphi_a++ ; 
		    px_a++ ;  
		    py_a++ ;  
		    pz_a++ ;  

		}
	    }
	}
	
	// The remaining points are obtained by symmetry with rspect to the
	//  y=0 plane
		
	for (int k=np/2+1 ; k<np ; k++) {

	    // pointer on the value (already computed) at the point symmetric 
	    // with respect to the plane y=0
	    double* ptx_symy = (va.c->t[l])->t + (np-k)*nt*nr ;  

	    // copy : 
	    for (int j=0 ; j<nt ; j++) {
		for (int i=0 ; i<nr ; i++) {
		    *ptx = *ptx_symy ; 
		    ptx++ ;
		    ptx_symy++ ; 
		}
	    }
	}
	
		
    }	// End of the loop on the Arrival domains
    
    // In the remaining domains, *this is set to zero:
    // ----------------------------------------------
    
    if (nzet < nz_a) {
	annule(nzet, nz_a - 1) ; 
    }
    
    // Treatment of dzpuis
    // -------------------
    
    set_dzpuis(0) ; 

}


		//-------------------------------------//
		//   Case of aligned Cartesian axis    //
		//-------------------------------------//


void Scalar::import_align_symy(int nzet, const Scalar& cm_d) {
    
    // Trivial case : null Scalar
    // ------------------------
    
    if (cm_d.get_etat() == ETATZERO) {
	set_etat_zero() ; 
	return ; 
    }
    if (cm_d.get_etat() == ETATUN) {
	set_etat_one() ; 
	return ; 
    }

    const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping

    // Protections
    // -----------
    int align = (mp->get_bvect_cart()).get_align() ;

    assert( align  * (mp_d->get_bvect_cart()).get_align() == 1 ) ; 
    
    assert(cm_d.get_etat() == ETATQCQ) ;

    if (cm_d.get_dzpuis() != 0) {
	cout << 
	"Scalar::import_align_symy : the dzpuis of the Scalar to be imported"
	<< " must be zero !" << endl ; 
	abort() ; 
    }


    const Mg3d* mg_a = mp->get_mg() ; 
    assert(mg_a->get_type_p() == NONSYM) ; 

    int nz_a = mg_a->get_nzone() ; 
    assert(nzet <= nz_a) ;     

    const Valeur& va_d = cm_d.get_spectral_va() ; 
    va_d.coef() ;		// The coefficients are required
    

    // Preparations for storing the result in *this 
    // --------------------------------------------
    del_t() ;	// delete all previously computed derived quantities
    
    set_etat_qcq() ;		// Set the state to ETATQCQ
    
    va.set_etat_c_qcq() ;	// Allocates the memory for the Mtbl va.c
				//  if it does not exist already
    va.c->set_etat_qcq() ;	// Allocates the memory for the Tbl's in each
				//  domain if they do not exist already


    // Departure (x,y,z) coordinates of the origin of the Arrival mapping :

    double xx_a, yy_a, zz_a ; 
    if (align == 1) {
	xx_a = mp->get_ori_x() - mp_d->get_ori_x() ; 
	yy_a = mp->get_ori_y() - mp_d->get_ori_y() ; 
    }
    else {
	xx_a = mp_d->get_ori_x() - mp->get_ori_x() ; 
	yy_a = mp_d->get_ori_y() - mp->get_ori_y() ; 
    }
    zz_a = mp->get_ori_z() - mp_d->get_ori_z() ; 

    
    // r, theta, phi, x, y and z on the Arrival mapping 
    //  update of the corresponding Coord's if necessary
    
    if ( (mp->r).c == 0x0 ) (mp->r).fait() ; 
    if ( (mp->tet).c == 0x0 ) (mp->tet).fait() ; 
    if ( (mp->phi).c == 0x0 ) (mp->phi).fait() ; 
    if ( (mp->x).c == 0x0 ) (mp->x).fait() ; 
    if ( (mp->y).c == 0x0 ) (mp->y).fait() ; 
    if ( (mp->z).c == 0x0 ) (mp->z).fait() ; 

    const Mtbl* mr_a = (mp->r).c ; 
    const Mtbl* mtet_a = (mp->tet).c ; 
    const Mtbl* mphi_a = (mp->phi).c ; 
    const Mtbl* mx_a = (mp->x).c ;
    const Mtbl* my_a = (mp->y).c ;
    const Mtbl* mz_a = (mp->z).c ;

    Param par_precis ;	    // Required precision in the method Map::val_lx
    int nitermax = 100 ;    // Maximum number of iteration in the secant method
    int niter ; 
    double precis = 1e-15 ; // Absolute precision in the secant method
    par_precis.add_int(nitermax) ;	
    par_precis.add_int_mod(niter) ; 
    par_precis.add_double(precis) ; 


    // Loop of the Arrival domains where the computation is to be performed
    // --------------------------------------------------------------------
    
    for (int l=0; l < nzet; l++) {
	
	int nr = mg_a->get_nr(l) ;
	int nt = mg_a->get_nt(l) ;
	int np = mg_a->get_np(l) ;
	
	
	const double* pr_a = mr_a->t[l]->t ;	  // Pointer on the values of r
	const double* ptet_a = mtet_a->t[l]->t ;  // Pointer on the values of theta
	const double* pphi_a = mphi_a->t[l]->t ;  // Pointer on the values of phi
	const double* px_a = mx_a->t[l]->t ;	  // Pointer on the values of X
	const double* py_a = my_a->t[l]->t ;	  // Pointer on the values of Y
	const double* pz_a = mz_a->t[l]->t ;	  // Pointer on the values of Z
	
	(va.c->t[l])->set_etat_qcq() ;	     // Allocates the array of double to
					     //  store the result 
	double* ptx = (va.c->t[l])->t ;	     // Pointer on the allocated array
	
	
	
	// Loop on half the grid points in the considered arrival domain
	// (the other half will be obtained by symmetry with respect to
	//  the y=0 plane). 
		
	for (int k=0 ; k<np/2+1 ; k++) {    // np/2+1 : half the grid
	    for (int j=0 ; j<nt ; j++) {
		for (int i=0 ; i<nr ; i++) {

		    double r = *pr_a ; 
		    double rd, tetd, phid ;
		    if (r == __infinity) {
			rd = r ;
			tetd = *ptet_a ;
			phid = *pphi_a ;
		    }
		    else {

			// Cartesian coordinates on the Departure mapping
			double xd = *px_a + xx_a ; 
			double yd = *py_a + yy_a ; 
			double zd = *pz_a + zz_a ; 

			// Spherical coordinates on the Departure mapping
			double rhod2 = xd*xd + yd*yd ; 
			double rhod = sqrt( rhod2 ) ;
			rd = sqrt(rhod2 + zd*zd) ;
			tetd = atan2(rhod, zd) ;
			phid = atan2(yd, xd) ; 
			if (phid < 0) phid += 2*M_PI ;
		    }		    


		    // NB: to increase the efficiency, the method Scalar::val_point
		    //  is not invoked; the method Mtbl_cf::val_point is 
		    //  called directly instead. 

		    // Value of the grid coordinates (l,xi) corresponding to
		    //  (rd,tetd,phid) :
		    
		    int ld ;	    // domain index
		    double xxd ;    // radial coordinate xi in [0,1] or [-1,1]
		    mp_d->val_lx(rd, tetd, phid, par_precis, ld, xxd) ;

		    // Value of the Departure Scalar at the obtained point:
		    *ptx = va_d.c_cf->val_point_symy(ld, xxd, tetd, phid) ;

		    // Next point : 
		    ptx++ ;   
		    pr_a++ ;  
		    ptet_a++ ;  
		    pphi_a++ ; 
		    px_a++ ;  
		    py_a++ ;  
		    pz_a++ ;  

		}
	    }
	}	
	
		
	// The remaining points are obtained by symmetry with rspect to the
	//  y=0 plane
		
	for (int k=np/2+1 ; k<np ; k++) {

	    // pointer on the value (already computed) at the point symmetric 
	    // with respect to the plane y=0
	    double* ptx_symy = (va.c->t[l])->t + (np-k)*nt*nr ;  

	    // copy : 
	    for (int j=0 ; j<nt ; j++) {
		for (int i=0 ; i<nr ; i++) {
		    *ptx = *ptx_symy ; 
		    ptx++ ;
		    ptx_symy++ ; 
		}
	    }
	} 

    }	// End of the loop on the Arrival domains
    
    // In the remaining domains, *this is set to zero:
    // ----------------------------------------------
    
    if (nzet < nz_a) {
	annule(nzet, nz_a - 1) ; 
    }
    
    // Treatment of dzpuis
    // -------------------
    
    set_dzpuis(0) ; 

}
}