1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
/*
* Member function of the Scalar class for initiating a Scalar from
* a Scalar defined on another mapping.
* Case where both Scalar's are symmetric with respect to their y=0 plane.
*/
/*
* Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
* Copyright (c) 1999-2001 Eric Gourgoulhon (Cmp version)
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char scalar_import_symy_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $" ;
/*
* $Id: scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
* $Log: scalar_import_symy.C,v $
* Revision 1.5 2014/10/13 08:53:46 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.4 2014/10/06 15:16:15 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.3 2003/10/10 15:57:29 j_novak
* Added the state one (ETATUN) to the class Scalar
*
* Revision 1.2 2003/10/01 13:04:44 e_gourgoulhon
* The method Tensor::get_mp() returns now a reference (and not
* a pointer) onto a mapping.
*
* Revision 1.1 2003/09/25 09:07:05 j_novak
* Added the functions for importing from another mapping (to be tested).
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_import_symy.C,v 1.5 2014/10/13 08:53:46 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "tensor.h"
#include "param.h"
#include "nbr_spx.h"
//-------------------------------//
// Importation in all domains //
//-------------------------------//
namespace Lorene {
void Scalar::import_symy(const Scalar& ci) {
int nz = mp->get_mg()->get_nzone() ;
import_symy(nz, ci) ;
}
//--------------------------------------//
// Importation in inner domains only //
//--------------------------------------//
void Scalar::import_symy(int nzet, const Scalar& cm_d) {
const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping
// Trivial case : mappings identical !
// -----------------------------------
if (mp_d == mp) {
*this = cm_d ;
return ;
}
// Relative orientation of the two mappings
// ----------------------------------------
int align_rel = (mp->get_bvect_cart()).get_align()
* (mp_d->get_bvect_cart()).get_align() ;
switch (align_rel) {
case 1 : { // the two mappings have aligned Cartesian axis
import_align_symy(nzet, cm_d) ;
break ;
}
case -1 : { // the two mappings have anti-aligned Cartesian axis
import_anti_symy(nzet, cm_d) ;
break ;
}
default : {
cout << "Scalar::import_symy : unexpected value of align_rel : "
<< align_rel << endl ;
abort() ;
break ;
}
}
}
//-----------------------------------------//
// Case of Cartesian axis anti-aligned //
//-----------------------------------------//
void Scalar::import_anti_symy(int nzet, const Scalar& cm_d) {
// Trivial case : null Scalar
// ------------------------
if (cm_d.get_etat() == ETATZERO) {
set_etat_zero() ;
return ;
}
if (cm_d.get_etat() == ETATUN) {
set_etat_one() ;
return ;
}
const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping
// Protections
// -----------
int align = (mp->get_bvect_cart()).get_align() ;
assert( align * (mp_d->get_bvect_cart()).get_align() == -1 ) ;
assert(cm_d.get_etat() == ETATQCQ) ;
if (cm_d.get_dzpuis() != 0) {
cout <<
"Scalar::import_anti_symy : the dzpuis of the Scalar to be imported"
<< " must be zero !" << endl ;
abort() ;
}
const Mg3d* mg_a = mp->get_mg() ;
assert(mg_a->get_type_p() == NONSYM) ;
int nz_a = mg_a->get_nzone() ;
assert(nzet <= nz_a) ;
const Valeur& va_d = cm_d.get_spectral_va() ;
va_d.coef() ; // The coefficients are required
// Preparations for storing the result in *this
// --------------------------------------------
del_t() ; // delete all previously computed derived quantities
set_etat_qcq() ; // Set the state to ETATQCQ
va.set_etat_c_qcq() ; // Allocates the memory for the Mtbl va.c
// if it does not exist already
va.c->set_etat_qcq() ; // Allocates the memory for the Tbl's in each
// domain if they do not exist already
// Departure (x,y,z) coordinates of the origin of the Arrival mapping :
double xx_a, yy_a, zz_a ;
if (align == 1) {
xx_a = mp_d->get_ori_x() - mp->get_ori_x() ;
yy_a = mp_d->get_ori_y() - mp->get_ori_y() ;
}
else {
xx_a = mp->get_ori_x() - mp_d->get_ori_x() ;
yy_a = mp->get_ori_y() - mp_d->get_ori_y() ;
}
zz_a = mp->get_ori_z() - mp_d->get_ori_z() ;
// r, theta, phi, x, y and z on the Arrival mapping
// update of the corresponding Coord's if necessary
if ( (mp->r).c == 0x0 ) (mp->r).fait() ;
if ( (mp->tet).c == 0x0 ) (mp->tet).fait() ;
if ( (mp->phi).c == 0x0 ) (mp->phi).fait() ;
if ( (mp->x).c == 0x0 ) (mp->x).fait() ;
if ( (mp->y).c == 0x0 ) (mp->y).fait() ;
if ( (mp->z).c == 0x0 ) (mp->z).fait() ;
const Mtbl* mr_a = (mp->r).c ;
const Mtbl* mtet_a = (mp->tet).c ;
const Mtbl* mphi_a = (mp->phi).c ;
const Mtbl* mx_a = (mp->x).c ;
const Mtbl* my_a = (mp->y).c ;
const Mtbl* mz_a = (mp->z).c ;
Param par_precis ; // Required precision in the method Map::val_lx
int nitermax = 100 ; // Maximum number of iteration in the secant method
int niter ;
double precis = 1e-15 ; // Absolute precision in the secant method
par_precis.add_int(nitermax) ;
par_precis.add_int_mod(niter) ;
par_precis.add_double(precis) ;
// Loop of the Arrival domains where the computation is to be performed
// --------------------------------------------------------------------
for (int l=0; l < nzet; l++) {
int nr = mg_a->get_nr(l) ;
int nt = mg_a->get_nt(l) ;
int np = mg_a->get_np(l) ;
const double* pr_a = mr_a->t[l]->t ; // Pointer on the values of r
const double* ptet_a = mtet_a->t[l]->t ; // Pointer on the values of theta
const double* pphi_a = mphi_a->t[l]->t ; // Pointer on the values of phi
const double* px_a = mx_a->t[l]->t ; // Pointer on the values of X
const double* py_a = my_a->t[l]->t ; // Pointer on the values of Y
const double* pz_a = mz_a->t[l]->t ; // Pointer on the values of Z
(va.c->t[l])->set_etat_qcq() ; // Allocates the array of double to
// store the result
double* ptx = (va.c->t[l])->t ; // Pointer on the allocated array
// Loop on half the grid points in the considered arrival domain
// (the other half will be obtained by symmetry with respect to
// the y=0 plane).
for (int k=0 ; k<np/2+1 ; k++) { // np/2+1 : half the grid
for (int j=0 ; j<nt ; j++) {
for (int i=0 ; i<nr ; i++) {
double r = *pr_a ;
double rd, tetd, phid ;
if (r == __infinity) {
rd = r ;
tetd = *ptet_a ;
phid = *pphi_a + M_PI ;
if (phid < 0) phid += 2*M_PI ;
}
else {
// Cartesian coordinates on the Departure mapping
double xd = - *px_a + xx_a ;
double yd = - *py_a + yy_a ;
double zd = *pz_a + zz_a ;
// Spherical coordinates on the Departure mapping
double rhod2 = xd*xd + yd*yd ;
double rhod = sqrt( rhod2 ) ;
rd = sqrt(rhod2 + zd*zd) ;
tetd = atan2(rhod, zd) ;
phid = atan2(yd, xd) ;
if (phid < 0) phid += 2*M_PI ;
}
// NB: to increase the efficiency, the method Scalar::val_point
// is not invoked; the method Mtbl_cf::val_point is
// called directly instead.
// Value of the grid coordinates (l,xi) corresponding to
// (rd,tetd,phid) :
int ld ; // domain index
double xxd ; // radial coordinate xi in [0,1] or [-1,1]
mp_d->val_lx(rd, tetd, phid, par_precis, ld, xxd) ;
// Value of the Departure Scalar at the obtained point:
*ptx = va_d.c_cf->val_point_symy(ld, xxd, tetd, phid) ;
// Next point :
ptx++ ;
pr_a++ ;
ptet_a++ ;
pphi_a++ ;
px_a++ ;
py_a++ ;
pz_a++ ;
}
}
}
// The remaining points are obtained by symmetry with rspect to the
// y=0 plane
for (int k=np/2+1 ; k<np ; k++) {
// pointer on the value (already computed) at the point symmetric
// with respect to the plane y=0
double* ptx_symy = (va.c->t[l])->t + (np-k)*nt*nr ;
// copy :
for (int j=0 ; j<nt ; j++) {
for (int i=0 ; i<nr ; i++) {
*ptx = *ptx_symy ;
ptx++ ;
ptx_symy++ ;
}
}
}
} // End of the loop on the Arrival domains
// In the remaining domains, *this is set to zero:
// ----------------------------------------------
if (nzet < nz_a) {
annule(nzet, nz_a - 1) ;
}
// Treatment of dzpuis
// -------------------
set_dzpuis(0) ;
}
//-------------------------------------//
// Case of aligned Cartesian axis //
//-------------------------------------//
void Scalar::import_align_symy(int nzet, const Scalar& cm_d) {
// Trivial case : null Scalar
// ------------------------
if (cm_d.get_etat() == ETATZERO) {
set_etat_zero() ;
return ;
}
if (cm_d.get_etat() == ETATUN) {
set_etat_one() ;
return ;
}
const Map* mp_d = &(cm_d.get_mp()) ; // Departure mapping
// Protections
// -----------
int align = (mp->get_bvect_cart()).get_align() ;
assert( align * (mp_d->get_bvect_cart()).get_align() == 1 ) ;
assert(cm_d.get_etat() == ETATQCQ) ;
if (cm_d.get_dzpuis() != 0) {
cout <<
"Scalar::import_align_symy : the dzpuis of the Scalar to be imported"
<< " must be zero !" << endl ;
abort() ;
}
const Mg3d* mg_a = mp->get_mg() ;
assert(mg_a->get_type_p() == NONSYM) ;
int nz_a = mg_a->get_nzone() ;
assert(nzet <= nz_a) ;
const Valeur& va_d = cm_d.get_spectral_va() ;
va_d.coef() ; // The coefficients are required
// Preparations for storing the result in *this
// --------------------------------------------
del_t() ; // delete all previously computed derived quantities
set_etat_qcq() ; // Set the state to ETATQCQ
va.set_etat_c_qcq() ; // Allocates the memory for the Mtbl va.c
// if it does not exist already
va.c->set_etat_qcq() ; // Allocates the memory for the Tbl's in each
// domain if they do not exist already
// Departure (x,y,z) coordinates of the origin of the Arrival mapping :
double xx_a, yy_a, zz_a ;
if (align == 1) {
xx_a = mp->get_ori_x() - mp_d->get_ori_x() ;
yy_a = mp->get_ori_y() - mp_d->get_ori_y() ;
}
else {
xx_a = mp_d->get_ori_x() - mp->get_ori_x() ;
yy_a = mp_d->get_ori_y() - mp->get_ori_y() ;
}
zz_a = mp->get_ori_z() - mp_d->get_ori_z() ;
// r, theta, phi, x, y and z on the Arrival mapping
// update of the corresponding Coord's if necessary
if ( (mp->r).c == 0x0 ) (mp->r).fait() ;
if ( (mp->tet).c == 0x0 ) (mp->tet).fait() ;
if ( (mp->phi).c == 0x0 ) (mp->phi).fait() ;
if ( (mp->x).c == 0x0 ) (mp->x).fait() ;
if ( (mp->y).c == 0x0 ) (mp->y).fait() ;
if ( (mp->z).c == 0x0 ) (mp->z).fait() ;
const Mtbl* mr_a = (mp->r).c ;
const Mtbl* mtet_a = (mp->tet).c ;
const Mtbl* mphi_a = (mp->phi).c ;
const Mtbl* mx_a = (mp->x).c ;
const Mtbl* my_a = (mp->y).c ;
const Mtbl* mz_a = (mp->z).c ;
Param par_precis ; // Required precision in the method Map::val_lx
int nitermax = 100 ; // Maximum number of iteration in the secant method
int niter ;
double precis = 1e-15 ; // Absolute precision in the secant method
par_precis.add_int(nitermax) ;
par_precis.add_int_mod(niter) ;
par_precis.add_double(precis) ;
// Loop of the Arrival domains where the computation is to be performed
// --------------------------------------------------------------------
for (int l=0; l < nzet; l++) {
int nr = mg_a->get_nr(l) ;
int nt = mg_a->get_nt(l) ;
int np = mg_a->get_np(l) ;
const double* pr_a = mr_a->t[l]->t ; // Pointer on the values of r
const double* ptet_a = mtet_a->t[l]->t ; // Pointer on the values of theta
const double* pphi_a = mphi_a->t[l]->t ; // Pointer on the values of phi
const double* px_a = mx_a->t[l]->t ; // Pointer on the values of X
const double* py_a = my_a->t[l]->t ; // Pointer on the values of Y
const double* pz_a = mz_a->t[l]->t ; // Pointer on the values of Z
(va.c->t[l])->set_etat_qcq() ; // Allocates the array of double to
// store the result
double* ptx = (va.c->t[l])->t ; // Pointer on the allocated array
// Loop on half the grid points in the considered arrival domain
// (the other half will be obtained by symmetry with respect to
// the y=0 plane).
for (int k=0 ; k<np/2+1 ; k++) { // np/2+1 : half the grid
for (int j=0 ; j<nt ; j++) {
for (int i=0 ; i<nr ; i++) {
double r = *pr_a ;
double rd, tetd, phid ;
if (r == __infinity) {
rd = r ;
tetd = *ptet_a ;
phid = *pphi_a ;
}
else {
// Cartesian coordinates on the Departure mapping
double xd = *px_a + xx_a ;
double yd = *py_a + yy_a ;
double zd = *pz_a + zz_a ;
// Spherical coordinates on the Departure mapping
double rhod2 = xd*xd + yd*yd ;
double rhod = sqrt( rhod2 ) ;
rd = sqrt(rhod2 + zd*zd) ;
tetd = atan2(rhod, zd) ;
phid = atan2(yd, xd) ;
if (phid < 0) phid += 2*M_PI ;
}
// NB: to increase the efficiency, the method Scalar::val_point
// is not invoked; the method Mtbl_cf::val_point is
// called directly instead.
// Value of the grid coordinates (l,xi) corresponding to
// (rd,tetd,phid) :
int ld ; // domain index
double xxd ; // radial coordinate xi in [0,1] or [-1,1]
mp_d->val_lx(rd, tetd, phid, par_precis, ld, xxd) ;
// Value of the Departure Scalar at the obtained point:
*ptx = va_d.c_cf->val_point_symy(ld, xxd, tetd, phid) ;
// Next point :
ptx++ ;
pr_a++ ;
ptet_a++ ;
pphi_a++ ;
px_a++ ;
py_a++ ;
pz_a++ ;
}
}
}
// The remaining points are obtained by symmetry with rspect to the
// y=0 plane
for (int k=np/2+1 ; k<np ; k++) {
// pointer on the value (already computed) at the point symmetric
// with respect to the plane y=0
double* ptx_symy = (va.c->t[l])->t + (np-k)*nt*nr ;
// copy :
for (int j=0 ; j<nt ; j++) {
for (int i=0 ; i<nr ; i++) {
*ptx = *ptx_symy ;
ptx++ ;
ptx_symy++ ;
}
}
}
} // End of the loop on the Arrival domains
// In the remaining domains, *this is set to zero:
// ----------------------------------------------
if (nzet < nz_a) {
annule(nzet, nz_a - 1) ;
}
// Treatment of dzpuis
// -------------------
set_dzpuis(0) ;
}
}
|