1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
/*
* Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
*
* Copyright (c) 2000-2001 Philippe Grandclement (Cmp version)
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char scalar_manip_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_manip.C,v 1.19 2014/10/13 08:53:46 j_novak Exp $" ;
/*
* $Id: scalar_manip.C,v 1.19 2014/10/13 08:53:46 j_novak Exp $
* $Log: scalar_manip.C,v $
* Revision 1.19 2014/10/13 08:53:46 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.18 2014/10/06 15:16:15 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.17 2008/10/03 09:03:52 j_novak
* Correction of yet another mistake (the array values in physical space was not
* destroyed).
*
* Revision 1.16 2008/09/30 08:35:18 j_novak
* Correction of forgotten call to coef()
*
* Revision 1.15 2008/09/29 13:23:51 j_novak
* Implementation of the angular mapping associated with an affine
* mapping. Things must be improved to take into account the domain index.
*
* Revision 1.14 2008/09/22 19:08:01 j_novak
* New methods to deal with boundary conditions
*
* Revision 1.13 2007/06/21 20:00:00 k_taniguchi
* Addition of the method filtre_r (int n, int nz)
*
* Revision 1.12 2006/06/28 07:46:41 j_novak
* Better treatment in the case of a domain set to zero.
*
* Revision 1.11 2005/09/07 13:39:10 j_novak
* *** empty log message ***
*
* Revision 1.10 2005/09/07 13:10:48 j_novak
* Added a filter setting to zero all mulitpoles in a given range.
*
* Revision 1.9 2004/11/23 12:47:44 f_limousin
* Add function filtre_tp(int nn, int nz1, int nz2).
*
* Revision 1.8 2004/05/07 11:24:54 f_limousin
* Implement new method filtre_r (int* nn)
*
* Revision 1.7 2004/02/27 09:47:26 f_limousin
* New methods filtre_phi(int) and filtre_theta(int).
*
* Revision 1.6 2004/01/23 13:26:28 e_gourgoulhon
* Added methods set_inner_boundary and set_outer_boundary.
* Methods set_val_inf and set_val_hor, which are particular cases of
* the above, have been suppressed.
*
* Revision 1.5 2003/11/13 13:43:55 p_grandclement
* Addition of things needed for Bhole::update_metric (const Etoile_bin&, double, double)
*
* Revision 1.4 2003/10/11 14:47:17 e_gourgoulhon
* Lines 112 and 145 : replaced "0" by "double(0)" in the comparison
* statement.
*
* Revision 1.3 2003/10/10 15:57:29 j_novak
* Added the state one (ETATUN) to the class Scalar
*
* Revision 1.2 2003/10/08 14:24:09 j_novak
* replaced mult_r_zec with mult_r_ced
*
* Revision 1.1 2003/09/25 09:33:36 j_novak
* Added methods for integral calculation and various manipulations
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_manip.C,v 1.19 2014/10/13 08:53:46 j_novak Exp $
*
*/
//standard
#include <cstdlib>
#include <cmath>
// Lorene
#include "tensor.h"
#include "proto.h"
#include "utilitaires.h"
/*
* Annule tous les l entre l_min et l_max (compris)
*/
namespace Lorene {
void Scalar::annule_l (int l_min, int l_max, bool ylm_output) {
assert (etat != ETATNONDEF) ;
assert (l_min <= l_max) ;
assert (l_min >= 0) ;
if (etat == ETATZERO )
return ;
if (etat == ETATUN) {
if (l_min == 0) set_etat_zero() ;
else return ;
}
va.ylm() ;
Mtbl_cf& m_coef = *va.c_cf ;
const Base_val& base = va.base ;
int l_q, m_q, base_r ;
for (int lz=0; lz<mp->get_mg()->get_nzone(); lz++)
if (m_coef(lz).get_etat() != ETATZERO)
for (int k=0; k<mp->get_mg()->get_np(lz)+1; k++)
for (int j=0; j<mp->get_mg()->get_nt(lz); j++)
for (int i=0; i<mp->get_mg()->get_nr(lz); i++) {
base.give_quant_numbers(lz, k, j, m_q, l_q, base_r) ;
if ((l_min <= l_q) && (l_q<= l_max))
m_coef.set(lz, k, j, i) = 0 ;
}
if (va.c != 0x0) {
delete va.c ;
va.c = 0x0 ;
}
if (!ylm_output)
va.ylm_i() ;
return ;
}
/*
* Annule les n derniers coefficients en r dans la derniere zone
*/
void Scalar::filtre (int n) {
assert (etat != ETATNONDEF) ;
if ( (etat == ETATZERO) || (etat == ETATUN) )
return ;
int nz = mp->get_mg()->get_nzone() ;
int np = mp->get_mg()->get_np(nz-1) ;
int nt = mp->get_mg()->get_nt(nz-1) ;
int nr = mp->get_mg()->get_nr(nz-1) ;
del_deriv() ;
va.coef() ;
va.set_etat_cf_qcq() ;
for (int k=0 ; k<np+1 ; k++)
if (k!=1)
for (int j=0 ; j<nt ; j++)
for (int i=nr-1 ; i>nr-1-n ; i--)
va.c_cf->set(nz-1, k, j, i) = 0 ;
}
/*
* Annule les n derniers coefficients en r dans toutes les zones
*/
void Scalar::filtre_r (int* nn) {
assert (etat != ETATNONDEF) ;
if ( (etat == ETATZERO) || (etat == ETATUN) )
return ;
del_deriv() ;
va.coef() ;
va.set_etat_cf_qcq() ;
int nz = mp->get_mg()->get_nzone() ;
int* nr = new int[nz];
int* nt = new int[nz];
int* np = new int[nz];
for (int l=0; l<=nz-1; l++) {
nr[l] = mp->get_mg()->get_nr(l) ;
nt[l] = mp->get_mg()->get_nt(l) ;
np[l] = mp->get_mg()->get_np(l) ;
}
for (int l=0; l<=nz-1; l++)
for (int k=0 ; k<np[l]+1 ; k++)
if (k!=1)
for (int j=0 ; j<nt[l] ; j++)
for (int i=nr[l]-1; i>nr[l]-1-nn[l] ; i--)
va.c_cf->set(l, k, j, i) = 0 ;
if (va.c != 0x0) {
delete va.c ;
va.c = 0x0 ;
}
}
/*
* Annule les n derniers coefficients en r dans zone nz
*/
void Scalar::filtre_r (int n, int nz) {
assert (etat != ETATNONDEF) ;
if ( (etat == ETATZERO) || (etat == ETATUN) )
return ;
del_deriv() ;
va.coef() ;
va.set_etat_cf_qcq() ;
int nr = mp->get_mg()->get_nr(nz) ;
int nt = mp->get_mg()->get_nt(nz) ;
int np = mp->get_mg()->get_np(nz) ;
for (int k=0 ; k<np+1 ; k++)
if (k!=1)
for (int j=0 ; j<nt ; j++)
for (int i=nr-1; i>nr-1-n ; i--)
va.c_cf->set(nz, k, j, i) = 0 ;
if (va.c != 0x0) {
delete va.c ;
va.c = 0x0 ;
}
}
/*
* Annule les n derniers coefficients en phi dans zone nz
*/
void Scalar::filtre_phi (int n, int nz) {
assert (etat != ETATNONDEF) ;
if ( (etat == ETATZERO) || (etat == ETATUN) )
return ;
del_deriv() ;
va.coef() ;
va.set_etat_cf_qcq() ;
int np = mp->get_mg()->get_np(nz) ;
int nt = mp->get_mg()->get_nt(nz) ;
int nr = mp->get_mg()->get_nr(nz) ;
for (int k=np+1-n ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++)
for (int i=0 ; i<nr ; i++)
va.c_cf->set(nz, k, j, i) = 0 ;
}
void Scalar::filtre_tp(int nn, int nz1, int nz2) {
va.filtre_tp(nn, nz1, nz2) ;
}
/* Sets the value of the {\tt Scalar} at the inner boundary of a given
* domain.
* @param l [input] domain index
* @param x [input] (constant) value at the inner boundary of domain no. {\tt l}
*/
void Scalar::set_inner_boundary(int l0, double x0) {
assert (etat != ETATNONDEF) ;
if (etat == ETATZERO) {
if (x0 == double(0)) return ;
else annule_hard() ;
}
if (etat == ETATUN) {
if (x0 == double(1)) return ;
else etat = ETATQCQ ;
}
del_deriv() ;
int nt = mp->get_mg()->get_nt(l0) ;
int np = mp->get_mg()->get_np(l0) ;
va.coef_i() ;
va.set_etat_c_qcq() ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++)
va.set(l0, k, j, 0) = x0 ;
}
/* Sets the value of the {\tt Scalar} at the outer boundary of a given
* domain.
* @param l [input] domain index
* @param x [input] (constant) value at the outer boundary of domain no. {\tt l}
*/
void Scalar::set_outer_boundary(int l0, double x0) {
assert (etat != ETATNONDEF) ;
if (etat == ETATZERO) {
if (x0 == double(0)) return ;
else annule_hard() ;
}
if (etat == ETATUN) {
if (x0 == double(1)) return ;
else etat = ETATQCQ ;
}
del_deriv() ;
int nrm1 = mp->get_mg()->get_nr(l0) - 1 ;
int nt = mp->get_mg()->get_nt(l0) ;
int np = mp->get_mg()->get_np(l0) ;
va.coef_i() ;
va.set_etat_c_qcq() ;
for (int k=0 ; k<np ; k++)
for (int j=0 ; j<nt ; j++)
va.set(l0, k, j, nrm1) = x0 ;
}
/*
* Permet de fixer la decroissance du cmp a l infini en viurant les
* termes en 1/r^n
*/
void Scalar::fixe_decroissance (int puis) {
if (puis<dzpuis)
return ;
else {
int nbre = puis-dzpuis ;
// le confort avant tout ! (c'est bien le confort ...)
int nz = mp->get_mg()->get_nzone() ;
int np = mp->get_mg()->get_np(nz-1) ;
int nt = mp->get_mg()->get_nt(nz-1) ;
int nr = mp->get_mg()->get_nr(nz-1) ;
const Map_af* map = dynamic_cast<const Map_af*>(mp) ;
if (map == 0x0) {
cout << "Le mapping doit etre affine" << endl ;
abort() ;
}
double alpha = map->get_alpha()[nz-1] ;
Scalar courant (*this) ;
va.coef() ;
va.set_etat_cf_qcq() ;
for (int conte=0 ; conte<nbre ; conte++) {
int base_r = courant.va.base.get_base_r(nz-1) ;
courant.va.coef() ;
// On calcul les coefficients de 1/r^conte
double* coloc = new double [nr] ;
int * deg = new int[3] ;
deg[0] = 1 ;
deg[1] = 1 ;
deg[2] = nr ;
for (int i=0 ; i<nr ; i++)
coloc[i] =pow(alpha, double(conte))*
pow(-1-cos(M_PI*i/(nr-1)), double(conte)) ;
cfrcheb(deg, deg, coloc, deg, coloc) ;
for (int k=0 ; k<np+1 ; k++)
if (k != 1)
for (int j=0 ; j<nt ; j++) {
// On doit determiner le coefficient du truc courant :
double* coef = new double [nr] ;
double* auxi = new double[1] ;
for (int i=0 ; i<nr ; i++)
coef[i] = (*courant.va.c_cf)(nz-1, k, j, i) ;
switch (base_r) {
case R_CHEBU :
som_r_chebu (coef, nr, 1, 1, 1, auxi) ;
break ;
default :
som_r_pas_prevu (coef, nr, 1, 1, 1, auxi) ;
break ;
}
// On modifie le cmp courant :
courant.va.coef() ;
courant.va.set_etat_cf_qcq() ;
courant.va.c_cf->set(nz-1, k, j, 0) -= *auxi ;
for (int i=0 ; i<nr ; i++)
this->va.c_cf->set(nz-1, k, j, i) -= *auxi * coloc[i] ;
delete [] coef ;
delete [] auxi ;
}
delete [] coloc ;
delete [] deg ;
courant.mult_r_ced() ;
}
}
}
Tbl Scalar::tbl_out_bound(int l_zone, bool output_ylm) {
va.coef() ;
if (output_ylm) va.ylm() ;
int np = mp->get_mg()->get_np(l_zone) ;
int nt = mp->get_mg()->get_nt(l_zone) ;
Tbl resu(np+2, nt) ;
if (etat == ETATZERO) resu.set_etat_zero() ;
else {
assert(etat == ETATQCQ) ;
resu.set_etat_qcq() ;
for (int k=0; k<np+2; k++)
for (int j=0; j<nt; j++)
resu.set(k, j) = va.c_cf->val_out_bound_jk(l_zone, j, k) ;
}
return resu ;
}
Tbl Scalar::tbl_in_bound(int l_zone, bool output_ylm) {
assert(mp->get_mg()->get_type_r(l_zone) != RARE) ;
va.coef() ;
if (output_ylm) va.ylm() ;
int np = mp->get_mg()->get_np(l_zone) ;
int nt = mp->get_mg()->get_nt(l_zone) ;
Tbl resu(np+2, nt) ;
if (etat == ETATZERO) resu.set_etat_zero() ;
else {
assert(etat == ETATQCQ) ;
resu.set_etat_qcq() ;
for (int k=0; k<np+2; k++)
for (int j=0; j<nt; j++)
resu.set(k, j) = va.c_cf->val_in_bound_jk(l_zone, j, k) ;
}
return resu ;
}
Scalar Scalar::scalar_out_bound(int l_zone, bool output_ylm) {
va.coef() ;
if (output_ylm) va.ylm() ;
Scalar resu(mp->mp_angu(l_zone)) ;
resu.std_spectral_base() ;
Base_val base = resu.get_spectral_base() ;
base.set_base_t(va.base.get_base_t(l_zone)) ;
resu.set_spectral_base(base) ;
if (etat == ETATZERO) resu.set_etat_zero() ;
else {
assert(etat == ETATQCQ) ;
resu.annule_hard() ;
int np = mp->get_mg()->get_np(l_zone) ;
int nt = mp->get_mg()->get_nt(l_zone) ;
for (int k=0; k<np+2; k++)
for (int j=0; j<nt; j++)
resu.set_spectral_va().c_cf->set(0, k, j, 0)
= va.c_cf->val_out_bound_jk(l_zone, j, k) ;
delete resu.set_spectral_va().c ;
resu.set_spectral_va().c = 0x0 ;
}
return resu ;
}
}
|