1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
/*
* Methods of the class Scalar for various partial differential equations
*
* See file scalar.h for documentation.
*/
/*
* Copyright (c) 2003-2005 Eric Gourgoulhon & Jerome Novak
* Copyright (c) 2004 Philippe Grandclement
*
* Copyright (c) 1999-2001 Eric Gourgoulhon (for preceding class Cmp)
* Copyright (c) 1999-2001 Philippe Grandclement (for preceding class Cmp)
* Copyright (c) 2000-2001 Jerome Novak (for preceding class Cmp)
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char scalar_pde_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_pde.C,v 1.20 2014/10/13 08:53:46 j_novak Exp $" ;
/*
* $Id: scalar_pde.C,v 1.20 2014/10/13 08:53:46 j_novak Exp $
* $Log: scalar_pde.C,v $
* Revision 1.20 2014/10/13 08:53:46 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.19 2007/05/06 10:48:15 p_grandclement
* Modification of a few operators for the vorton project
*
* Revision 1.18 2007/01/16 15:10:00 n_vasset
* New function sol_elliptic_boundary, with Scalar on mono domain
* angular grid as boundary
*
* Revision 1.17 2005/11/30 11:09:09 p_grandclement
* Changes for the Bin_ns_bh project
*
* Revision 1.16 2005/08/26 14:02:41 p_grandclement
* Modification of the elliptic solver that matches with an oscillatory exterior solution
* small correction in Poisson tau also...
*
* Revision 1.15 2005/08/25 12:14:10 p_grandclement
* Addition of a new method to solve the scalar Poisson equation, based on a multi-domain Tau-method
*
* Revision 1.14 2005/06/09 08:00:10 f_limousin
* Implement a new function sol_elliptic_boundary() and
* Vector::poisson_boundary(...) which solve the vectorial poisson
* equation (method 6) with an inner boundary condition.
*
* Revision 1.13 2005/04/04 21:34:44 e_gourgoulhon
* Added argument lambda to method poisson_angu
* to deal with the generalized angular Poisson equation:
* Lap_ang u + lambda u = source.
*
* Revision 1.12 2004/08/24 09:14:52 p_grandclement
* Addition of some new operators, like Poisson in 2d... It now requieres the
* GSL library to work.
*
* Also, the way a variable change is stored by a Param_elliptic is changed and
* no longer uses Change_var but rather 2 Scalars. The codes using that feature
* will requiere some modification. (It should concern only the ones about monopoles)
*
* Revision 1.11 2004/06/22 08:50:00 p_grandclement
* Addition of everything needed for using the logarithmic mapping
*
* Revision 1.10 2004/05/25 14:30:48 f_limousin
* Minor modif.
*
* Revision 1.9 2004/03/17 15:58:50 p_grandclement
* Slight modification of sol_elliptic_no_zec
*
* Revision 1.8 2004/03/01 09:57:04 j_novak
* the wave equation is solved with Scalars. It now accepts a grid with a
* compactified external domain, which the solver ignores and where it copies
* the values of the field from one time-step to the next.
*
* Revision 1.7 2004/02/11 09:47:46 p_grandclement
* Addition of a new elliptic solver, matching with the homogeneous solution
* at the outer shell and not solving in the external domain (more details
* coming soon ; check your local Lorene dealer...)
*
* Revision 1.6 2004/01/28 16:59:14 p_grandclement
* *** empty log message ***
*
* Revision 1.5 2004/01/28 16:46:24 p_grandclement
* Addition of the sol_elliptic_fixe_der_zero stuff
*
* Revision 1.4 2004/01/14 10:11:51 f_limousin
* Corrected bug in poisson with parameters.
*
* Revision 1.3 2003/12/11 14:48:51 p_grandclement
* Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
*
* Revision 1.2 2003/10/15 21:14:23 e_gourgoulhon
* Added method poisson_angu().
*
* Revision 1.1 2003/09/25 08:06:56 e_gourgoulhon
* First versions (use Cmp as intermediate quantities).
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_pde.C,v 1.20 2014/10/13 08:53:46 j_novak Exp $
*
*/
// Header Lorene:
#include "map.h"
#include "scalar.h"
#include "tensor.h"
#include "param.h"
#include "cmp.h"
#include "param_elliptic.h"
//-----------------------------------//
// Scalar Poisson equation //
//-----------------------------------//
// Version without parameters
// --------------------------
namespace Lorene {
Scalar Scalar::poisson() const {
Param bidon ;
Cmp csource(*this) ;
Cmp cresu(mp) ;
cresu = 0. ;
mp->poisson(csource, bidon, cresu) ;
Scalar resu(cresu) ;
return resu ;
}
// Version with parameters
// -----------------------
void Scalar::poisson(Param& par, Scalar& uu) const {
Cmp csource(*this) ;
Cmp cuu(uu) ;
mp->poisson(csource, par, cuu) ;
uu = cuu ;
}
//-----------------------------------------------//
// Scalar Poisson equation (TAU method) //
//----------------------------------------------//
// without parameters
// --------------------------
Scalar Scalar::poisson_tau() const {
Param bidon ;
Cmp csource(*this) ;
Cmp cresu(mp) ;
cresu = 0. ;
mp->poisson_tau(csource, bidon, cresu) ;
Scalar resu(cresu) ;
return resu ;
}
// Version with parameters
// -----------------------
void Scalar::poisson_tau (Param& par, Scalar& uu) const {
Cmp csource(*this) ;
Cmp cuu(uu) ;
mp->poisson_tau(csource, par, cuu) ;
uu = cuu ;
}
//-----------------------------------//
// Angular Poisson equation //
//-----------------------------------//
Scalar Scalar::poisson_angu(double lambda) const {
Param bidon ;
Scalar resu(*mp) ;
resu = 0. ;
mp->poisson_angu(*this, bidon, resu, lambda) ;
return resu ;
}
//-----------------------------------//
// Scalar d'Alembert equation //
//-----------------------------------//
Scalar Scalar::avance_dalembert(Param& par, const Scalar& fjm1,
const Scalar& source) const {
Scalar fjp1(*mp) ;
mp->dalembert(par, fjp1, *this, fjm1, source) ;
return fjp1 ;
}
//-----------------------------------//
// General elliptic equation //
//-----------------------------------//
Scalar Scalar::sol_elliptic(Param_elliptic& ope_var) const {
// Right now, only applicable with affine mapping or log one
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
if ((map_affine == 0x0) && (map_log == 0x0)) {
cout << "sol_elliptic only defined for affine or log mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
if (map_affine != 0x0)
map_affine->sol_elliptic (ope_var, *this, res) ;
else
map_log->sol_elliptic (ope_var, *this, res) ;
return (res) ;
}
Scalar Scalar::sol_elliptic_boundary(Param_elliptic& ope_var, const Mtbl_cf& bound,
double fact_dir, double fact_neu) const {
// Right now, only applicable with affine mapping or log one
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
if ((map_affine == 0x0) && (map_log == 0x0)) {
cout << "sol_elliptic only defined for affine or log mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
if (map_affine != 0x0)
map_affine->sol_elliptic_boundary (ope_var, *this, res, bound,
fact_dir, fact_neu ) ;
else
map_log->sol_elliptic_boundary (ope_var, *this, res, bound,
fact_dir, fact_neu ) ;
return (res) ;
}
Scalar Scalar::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& bound,
double fact_dir, double fact_neu) const {
// Right now, only applicable with affine mapping or log one
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
if ((map_affine == 0x0) && (map_log == 0x0)) {
cout << "sol_elliptic only defined for affine or log mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
if (map_affine != 0x0)
map_affine->sol_elliptic_boundary (ope_var, *this, res, bound,
fact_dir, fact_neu ) ;
else
map_log->sol_elliptic_boundary (ope_var, *this, res, bound,
fact_dir, fact_neu ) ;
return (res) ;
}
//-----------------------------------//
// General elliptic equation //
// with no ZEC //
//-----------------------------------//
Scalar Scalar::sol_elliptic_no_zec(Param_elliptic& ope_var, double val) const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
if ((map_affine == 0x0) && (map_log == 0x0)) {
cout << "sol_elliptic_no_zec only defined for affine or log mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
if (map_affine != 0x0)
map_affine->sol_elliptic_no_zec (ope_var, *this, res, val) ;
else
map_log->sol_elliptic_no_zec (ope_var, *this, res, val) ;
return (res) ;
}
//-----------------------------------//
// General elliptic equation //
// with no ZEC //
//-----------------------------------//
Scalar Scalar::sol_elliptic_only_zec(Param_elliptic& ope_var, double val) const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
if (map_affine == 0x0) {
cout << "sol_elliptic_no_zec only defined for affine or log mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
map_affine->sol_elliptic_only_zec (ope_var, *this, res, val) ;
return (res) ;
}
//-----------------------------------//
// General elliptic equation //
// with no ZEC and a //
// matching with sin(r)/r //
//-----------------------------------//
Scalar Scalar::sol_elliptic_sin_zec(Param_elliptic& ope_var, double* amplis, double* phases)
const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
if (map_affine == 0x0) {
cout << "sol_elliptic_sin_zec only defined for affine mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
map_affine->sol_elliptic_sin_zec (ope_var, *this, res, amplis, phases) ;
return (res) ;
}
//-----------------------------------//
// General elliptic equation //
// fixing the radial derivative //
//-----------------------------------//
Scalar Scalar::sol_elliptic_fixe_der_zero (double valeur,
Param_elliptic& ope_var) const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
if (map_affine == 0x0) {
cout << "sol_elliptic_no_zec only defined for affine mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
map_affine->sol_elliptic_fixe_der_zero (valeur, ope_var, *this, res) ;
return (res) ;
}
//-----------------------------------//
// Two-dimensional Poisson eq. //
//-----------------------------------//
Scalar Scalar::sol_elliptic_2d (Param_elliptic& ope_var) const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
if (map_affine == 0x0) {
cout << "Poisson 2D only defined for affine mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
map_affine->sol_elliptic_2d(ope_var, *this, res) ;
return (res) ;
}
//-----------------------------------//
// Pseudo-1dimensional eq. //
//-----------------------------------//
Scalar Scalar::sol_elliptic_pseudo_1d (Param_elliptic& ope_var) const {
// Right now, only applicable with affine mapping
const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
if (map_affine == 0x0) {
cout << "Pseudo_1d only defined for affine mapping" << endl ;
abort() ;
}
Scalar res (*mp) ;
res.set_etat_qcq() ;
map_affine->sol_elliptic_pseudo_1d(ope_var, *this, res) ;
return (res) ;
}
}
|