1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Resolution of the divergence ODE: df/df + n*f/r = source (source must have dzpuis =2)
*
* (see file scalar.h for documentation).
*
*/
/*
* Copyright (c) 2005 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char scalar_sol_div_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_sol_div.C,v 1.5 2014/10/13 08:53:47 j_novak Exp $" ;
/*
* $Id: scalar_sol_div.C,v 1.5 2014/10/13 08:53:47 j_novak Exp $
* $Log: scalar_sol_div.C,v $
* Revision 1.5 2014/10/13 08:53:47 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.4 2014/10/06 15:16:16 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.3 2005/09/16 14:33:00 j_novak
* Added #include <math.h>.
*
* Revision 1.2 2005/09/16 12:49:52 j_novak
* The case with dzpuis=1 is added.
*
* Revision 1.1 2005/06/08 12:35:22 j_novak
* New method for solving divergence-like ODEs.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_sol_div.C,v 1.5 2014/10/13 08:53:47 j_novak Exp $
*
*/
// C headers
#include <cassert>
#include <cmath>
//Lorene headers
#include "tensor.h"
#include "diff.h"
#include "proto.h"
// Local prototypes
namespace Lorene {
void _sx_r_chebp(Tbl* , int& ) ;
void _sx_r_chebi(Tbl* , int& ) ;
Scalar Scalar::sol_divergence(int n_factor) const {
assert(etat != ETATNONDEF) ;
const Map_af* mpaff = dynamic_cast<const Map_af*>(mp) ;
assert( mpaff != 0x0) ;
Scalar result(*mp) ;
if ( etat == ETATZERO )
result.set_etat_zero() ;
else { //source not zero
Base_val base_resu = get_spectral_base() ;
base_resu.mult_x() ;
const Mg3d* mg = mp->get_mg() ;
result.set_etat_qcq() ; result.set_spectral_base(base_resu) ;
result.set_spectral_va().set_etat_cf_qcq() ;
Valeur sigma(va) ;
sigma.ylm_i() ; // work on Fourier basis
const Mtbl_cf& source = *sigma.c_cf ;
// Checks on the type of domains
int nz = mg->get_nzone() ;
bool ced = (mg->get_type_r(nz-1) == UNSURR ) ;
assert ( (!ced) || (check_dzpuis(2)) || (check_dzpuis(1)) ) ;
assert (mg->get_type_r(0) == RARE) ;
int nt = mg->get_nt(0) ;
int np = mg->get_np(0) ;
#ifndef NDEBUG
for (int lz = 0; lz<nz; lz++)
assert( (mg->get_nt(lz) == nt) && (mg->get_np(lz) == np) ) ;
#endif
int nr, base_r,l_quant, m_quant;
Tbl *so ;
Tbl *s_hom ;
Tbl *s_part ;
// Working objects and initialization
Mtbl_cf sol_part(mg, base_resu) ;
Mtbl_cf sol_hom(mg, base_resu) ;
Mtbl_cf& resu = *result.set_spectral_va().c_cf ;
sol_part.annule_hard();
sol_hom.annule_hard() ;
resu.annule_hard() ;
//---------------
//-- NUCLEUS ---
//---------------
int lz = 0 ;
nr = mg->get_nr(lz) ;
int dege = 1 ; // the operator is degenerate
int nr0 = nr - dege ;
Tbl vect1(3, 1, nr) ;
Tbl vect2(3, 1, nr) ;
int base_pipo = 0 ;
double alpha = mpaff->get_alpha()[lz] ;
double beta = 0. ;
Matrice ope_even(nr0, nr0) ; //when the *result* is decomposed on R_CHEBP
ope_even.set_etat_qcq() ;
for (int i=dege; i<nr; i++) {
vect1.annule_hard() ;
vect2.annule_hard() ;
vect1.set(0,0,i) = 1. ; vect2.set(0,0,i) = 1. ;
_dsdx_r_chebp(&vect1, base_pipo) ;
_sx_r_chebp(&vect2, base_pipo) ;
for (int j=0; j<nr0; j++)
ope_even.set(j,i-dege) = (vect1(0,0,j) + n_factor*vect2(0,0,j)) / alpha ;
}
ope_even.set_lu() ;
Matrice ope_odd(nr0, nr0) ; //when the *result* is decomposed on R_CHEBI
ope_odd.set_etat_qcq() ;
for (int i=0; i<nr0; i++) {
vect1.annule_hard() ;
vect2.annule_hard() ;
vect1.set(0,0,i) = 1. ; vect2.set(0,0,i) = 1. ;
_dsdx_r_chebi(&vect1, base_pipo) ;
_sx_r_chebi(&vect2, base_pipo) ;
for (int j=0; j<nr0; j++)
ope_odd.set(j,i) = (vect1(0,0,j) + n_factor*vect2(0,0,j)) / alpha ;
}
ope_odd.set_lu() ;
for (int k=0 ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++) {
// to get the spectral base
base_resu.give_quant_numbers(lz, k, j, m_quant, l_quant, base_r) ;
assert ( (base_r == R_CHEBP) || (base_r == R_CHEBI) ) ;
const Matrice& operateur = (( base_r == R_CHEBP ) ?
ope_even : ope_odd ) ;
// particular solution
so = new Tbl(nr0) ;
so->set_etat_qcq() ;
for (int i=0 ; i<nr0 ; i++)
so->set(i) = source(lz, k, j, i) ;
s_part = new Tbl(operateur.inverse(*so)) ;
// Putting to Mtbl_cf
double somme = 0 ;
for (int i=0 ; i<nr0 ; i++) {
if (base_r == R_CHEBP) {
resu.set(lz, k, j, i+dege) = (*s_part)(i) ;
somme += ((i+dege)%2 == 0 ? 1 : -1)*(*s_part)(i) ;
}
else
resu.set(lz,k,j,i) = (*s_part)(i) ;
}
if (base_r == R_CHEBI)
for (int i=nr0; i<nr; i++)
resu.set(lz,k,j,i) = 0 ;
if (base_r == R_CHEBP) //result must vanish at r=0
resu.set(lz, k, j, 0) -= somme ;
delete so ;
delete s_part ;
}
//---------------------
//-- SHELLS --
//---------------------
int nz0 = (ced ? nz - 1 : nz) ;
for (lz=1 ; lz<nz0 ; lz++) {
nr = mg->get_nr(lz) ;
alpha = mpaff->get_alpha()[lz] ;
beta = mpaff->get_beta()[lz];
double ech = beta / alpha ;
Diff_id id(R_CHEB, nr) ; const Matrice& mid = id.get_matrice() ;
Diff_xdsdx xd(R_CHEB, nr) ; const Matrice& mxd = xd.get_matrice() ;
Diff_dsdx dx(R_CHEB, nr) ; const Matrice& mdx = dx.get_matrice() ;
Matrice operateur = mxd + ech*mdx + n_factor*mid ;
operateur.set_lu() ;
// homogeneous solution
s_hom = new Tbl(solh(nr, n_factor-1, ech, R_CHEB)) ;
for (int k=0 ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++) {
// to get the spectral base
base_resu.give_quant_numbers(lz, k, j, m_quant, l_quant, base_r) ;
assert (base_r == R_CHEB) ;
so = new Tbl(nr) ;
so->set_etat_qcq() ;
// particular solution
Tbl tmp(nr) ;
tmp.set_etat_qcq() ;
for (int i=0 ; i<nr ; i++)
tmp.set(i) = source(lz, k, j, i) ;
for (int i=0; i<nr; i++) so->set(i) = beta*tmp(i) ;
multx_1d(nr, &tmp.t, R_CHEB) ;
for (int i=0; i<nr; i++) so->set(i) += alpha*tmp(i) ;
s_part = new Tbl (operateur.inverse(*so)) ;
// cleaning things...
for (int i=0 ; i<nr ; i++) {
sol_part.set(lz, k, j, i) = (*s_part)(i) ;
sol_hom.set(lz, k, j, i) = (*s_hom)(1,i) ;
}
delete so ;
delete s_part ;
}
delete s_hom ;
}
if (ced) {
//---------------
//-- CED -----
//---------------
int dzp = ( check_dzpuis(2) ? 2 : 1) ;
nr = source.get_mg()->get_nr(nz-1) ;
alpha = mpaff->get_alpha()[nz-1] ;
beta = mpaff->get_beta()[nz-1] ;
dege = dzp ;
nr0 = nr - dege ;
Diff_dsdx dx(R_CHEBU, nr) ; const Matrice& mdx = dx.get_matrice() ;
Diff_sx sx(R_CHEBU, nr) ; const Matrice& msx = sx.get_matrice() ;
Diff_xdsdx xdx(R_CHEBU, nr) ; const Matrice& mxdx = xdx.get_matrice() ;
Diff_id id(R_CHEBU, nr) ; const Matrice& mid = id.get_matrice() ;
Matrice operateur(nr0, nr0) ;
operateur.set_etat_qcq() ;
if (dzp == 2)
for (int lin=0; lin<nr0; lin++)
for (int col=dege; col<nr; col++)
operateur.set(lin,col-dege) = (-mdx(lin,col)
+ n_factor*msx(lin, col)) / alpha ;
else {
for (int lin=0; lin<nr0; lin++) {
for (int col=dege; col<nr; col++)
operateur.set(lin,col-dege) = (-mxdx(lin,col)
+ n_factor*mid(lin, col)) ;
}
}
operateur.set_lu() ;
// homogeneous solution
s_hom = new Tbl(solh(nr, n_factor-1, 0., R_CHEBU)) ;
for (int k=0 ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++) {
base_resu.give_quant_numbers(lz, k, j, m_quant, l_quant, base_r) ;
assert(base_r == R_CHEBU) ;
// particular solution
so = new Tbl(nr0) ;
so->set_etat_qcq() ;
for (int i=0 ; i<nr0 ; i++)
so->set(i) = source(nz-1, k, j, i) ;
s_part = new Tbl(operateur.inverse(*so)) ;
// cleaning
double somme = 0 ;
for (int i=0 ; i<nr0 ; i++) {
sol_part.set(nz-1, k, j, i+dege) = (*s_part)(i) ;
somme += (*s_part)(i) ;
sol_hom.set(nz-1, k, j, i) = (*s_hom)(i) ;
}
for (int i=nr0; i<nr; i++)
sol_hom.set(nz-1, k, j, i) = (*s_hom)(i) ;
//result must vanish at infinity
sol_part.set(nz-1, k, j, 0) = -somme ;
delete so ;
delete s_part ;
}
delete s_hom ;
}
//-------------------------
//-- matching solutions ---
//-------------------------
if (nz > 1) {
Tbl echelles(nz-1) ;
echelles.set_etat_qcq() ;
for (lz=1; lz<nz; lz++)
echelles.set(lz-1)
= pow ( (mpaff->get_beta()[lz]/mpaff->get_alpha()[lz] -1),
n_factor) ;
if (ced) echelles.set(nz-2) = 1./pow(-2., n_factor) ;
for (int k=0 ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++) {
for (lz=1; lz<nz; lz++) {
double val1 = 0 ;
double valm1 = 0 ;
double valhom1 = 0 ;
int nr_prec = mg->get_nr(lz-1) ;
nr = mg->get_nr(lz) ;
for (int i=0; i<nr_prec; i++)
val1 += resu(lz-1, k, j, i) ;
for (int i=0; i<nr; i++) {
valm1 += ( i%2 == 0 ? 1 : -1)*sol_part(lz, k, j, i) ;
valhom1 += ( i%2 == 0 ? 1 : -1)*sol_hom(lz, k, j, i) ;
}
double lambda = (val1 - valm1) * echelles(lz-1) ;
for (int i=0; i<nr; i++)
resu.set(lz, k, j, i) = sol_part(lz, k, j, i)
+ lambda*sol_hom(lz, k, j, i) ;
}
}
}
}
return result ;
}
}
|