1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
* Manipulation of auxiliary potentials for Sym_tensor_trans objects.
*
* (see file sym_tensor.h for documentation).
*
*/
/*
* Copyright (c) 2005-2006 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char sym_tensor_trans_aux_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/sym_tensor_trans_aux.C,v 1.21 2014/10/13 08:53:43 j_novak Exp $" ;
/*
* $Id: sym_tensor_trans_aux.C,v 1.21 2014/10/13 08:53:43 j_novak Exp $
* $Log: sym_tensor_trans_aux.C,v $
* Revision 1.21 2014/10/13 08:53:43 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.20 2014/10/06 15:13:19 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.19 2010/10/11 10:23:03 j_novak
* Removed methods Sym_tensor_trans::solve_hrr() and Sym_tensor_trans::set_WX_det_one(), as they are no longer relevant.
*
* Revision 1.18 2008/12/05 08:46:19 j_novak
* New method Sym_tensor_trans_aux::set_tt_part_det_one.
*
* Revision 1.17 2007/04/27 13:52:55 j_novak
* In method Sym_tensor_trans::set_AtBtt_det_one(), the member p_tt (the TT-part)
* is updated.
*
* Revision 1.16 2007/03/20 12:20:56 j_novak
* In Sym_tensor_trans::set_AtBtt_det_one(), the trace is stored in the resulting
* object.
*
* Revision 1.15 2006/10/24 13:03:19 j_novak
* New methods for the solution of the tensor wave equation. Perhaps, first
* operational version...
*
* Revision 1.14 2006/09/15 08:48:01 j_novak
* Suppression of some messages in the optimized version.
*
* Revision 1.13 2006/08/31 12:13:22 j_novak
* Added an argument of type Param to Sym_tensor_trans::sol_Dirac_A().
*
* Revision 1.12 2006/06/26 09:28:13 j_novak
* Added a forgotten initialisation in set_AtB_trace_zero().
*
* Revision 1.11 2006/06/20 12:07:15 j_novak
* Improved execution speed for sol_Dirac_tildeB...
*
* Revision 1.10 2006/06/14 10:04:21 j_novak
* New methods sol_Dirac_l01, set_AtB_det_one and set_AtB_trace_zero.
*
* Revision 1.9 2006/01/17 15:50:53 j_novak
* Slight re-arrangment of the det=1 formula.
*
* Revision 1.8 2005/11/28 14:45:17 j_novak
* Improved solution of the Poisson tensor equation in the case of a transverse
* tensor.
*
* Revision 1.7 2005/09/16 13:34:44 j_novak
* Back to dzpuis 1 for the source for mu. eta is computed the same way as hrr.
*
* Revision 1.6 2005/09/08 16:00:23 j_novak
* Change of dzpuis for source for mu (temporary?).
*
* Revision 1.5 2005/09/07 16:47:43 j_novak
* Removed method Sym_tensor_trans::T_from_det_one
* Modified Sym_tensor::set_auxiliary, so that it takes eta/r and mu/r as
* arguments.
* Modified Sym_tensor_trans::set_hrr_mu.
* Added new protected method Sym_tensor_trans::solve_hrr
*
* Revision 1.4 2005/04/08 08:22:04 j_novak
* New methods set_hrr_mu_det_one() and set_WX_det_one(). Not tested yet...
*
* Revision 1.3 2005/04/07 07:56:22 j_novak
* Better handling of dzpuis (first try).
*
* Revision 1.2 2005/04/06 15:49:46 j_novak
* Error corrected.
*
* Revision 1.1 2005/04/06 15:43:59 j_novak
* New method Sym_tensor_trans::T_from_det_one(...).
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/sym_tensor_trans_aux.C,v 1.21 2014/10/13 08:53:43 j_novak Exp $
*
*/
// C headers
#include <cassert>
// Lorene headers
#include "metric.h"
#include "param.h"
namespace Lorene {
void Sym_tensor_trans::set_hrr_mu_det_one(const Scalar& hrr, const Scalar& mu_in,
double precis, int it_max ) {
// All this has a meaning only for spherical components:
assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ;
assert(hrr.check_dzpuis(0)) ;
assert(mu_in.check_dzpuis(0)) ;
assert(&mu_in != p_mu) ;
assert( (precis > 0.) && (it_max > 0) ) ;
Sym_tensor_tt tens_tt(*mp, *triad, *met_div) ;
tens_tt.set_rr_mu(hrr, mu_in) ;
tens_tt.inc_dzpuis(2) ;
trace_from_det_one(tens_tt, precis, it_max) ;
dec_dzpuis(2) ;
return ;
}
void Sym_tensor_trans::set_AtBtt_det_one(const Scalar& a_in, const Scalar& tbtt_in,
const Scalar* h_prev, Param* par_bc,
Param* par_mat, double precis,
int it_max ) {
// All this has a meaning only for spherical components:
assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ;
assert(a_in.check_dzpuis(2)) ;
assert(tbtt_in.check_dzpuis(2)) ;
assert(&a_in != p_aaa) ;
assert(&tbtt_in != p_tilde_b) ;
assert( (precis > 0.) && (it_max > 0) ) ;
//Computation of mu and X from A
//-------------------------------
Scalar mu_over_r(*mp) ;
Scalar x_new(*mp) ;
sol_Dirac_A(a_in, mu_over_r, x_new, par_bc) ;
// Preparation for the iteration
//------------------------------
Scalar h_old(*mp) ;
if (h_prev != 0x0)
h_old = *h_prev ;
else
h_old.set_etat_zero() ;
double lambda = 1. ;
Scalar zero(*mp) ;
zero.set_etat_zero() ;
Scalar hrr_tt(*mp) ;
Scalar eta_sr_tt(*mp) ;
Scalar w_tt(*mp) ;
sol_Dirac_tilde_B(tbtt_in, zero, hrr_tt, eta_sr_tt, w_tt, par_bc, par_mat) ;
Sym_tensor_tt hijtt(*mp, *triad, *met_div) ;
hijtt.set_auxiliary(hrr_tt, eta_sr_tt, mu_over_r, w_tt, x_new, zero) ;
Scalar hrr_new(*mp) ;
Scalar eta_over_r(*mp) ;
Scalar w_new(*mp) ;
for (int it=0; it<=it_max; it++) {
Scalar tilde_B = get_tilde_B_from_TT_trace(zero, h_old) ;
sol_Dirac_tilde_B(tilde_B, h_old, hrr_new, eta_over_r, w_new, 0x0, par_mat) ;
set_auxiliary(hrr_new+hrr_tt, eta_over_r+eta_sr_tt, mu_over_r,
w_new+w_tt, x_new, h_old - hrr_new-hrr_tt) ;
const Sym_tensor_trans& hij = *this ;
Scalar h_new = (1 + hij(1,1))*( hij(2,3)*hij(2,3) - hij(2,2)*hij(3,3) )
+ hij(1,2)*hij(1,2)*(1 + hij(3,3))
+ hij(1,3)*hij(1,3)*(1 + hij(2,2))
- hij(1,1)*(hij(2,2) + hij(3,3)) - 2*hij(1,2)*hij(1,3)*hij(2,3) ;
h_new.set_spectral_base(hrr_tt.get_spectral_base()) ;
double diff = max(max(abs(h_new - h_old))) ;
#ifndef NDEBUG
cout << "Sym_tensor_trans::set_AtB_det_one : "
<< "iteration : " << it << " convergence on h: "
<< diff << endl ;
#endif
if (diff < precis) {
set_auxiliary(hrr_new+hrr_tt, eta_over_r+eta_sr_tt, mu_over_r,
w_new+w_tt, x_new, h_old - hrr_new-hrr_tt) ;
if (p_aaa != 0x0) delete p_aaa ;
p_aaa = new Scalar(a_in) ;
if (p_tilde_b != 0x0) delete p_tilde_b ;
p_tilde_b = new Scalar(tilde_B + tbtt_in) ;
if (p_trace != 0x0) delete p_trace ;
p_trace = new Scalar(h_old) ;
if (p_tt != 0x0) delete p_tt ;
p_tt = new Sym_tensor_tt(hijtt) ;
p_tt->inc_dzpuis(2) ;
break ;
}
else {
h_old = lambda*h_new +(1-lambda)*h_old ;
}
if (it == it_max) {
cout << "Sym_tensor_trans:::set_AtBtt_det_one : convergence not reached \n" ;
cout << " for the required accuracy (" << precis << ") ! "
<< endl ;
abort() ;
}
}
return ;
}
void Sym_tensor_trans::set_tt_part_det_one(const Sym_tensor_tt& hijtt, const
Scalar* h_prev, Param* par_mat,
double precis, int it_max ) {
// All this has a meaning only for spherical components:
assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ;
assert( (precis > 0.) && (it_max > 0) ) ;
Scalar mu_over_r = hijtt.mu() ;
mu_over_r.div_r() ;
const Scalar& x_new = hijtt.xxx() ;
// Preparation for the iteration
//------------------------------
Scalar h_old(*mp) ;
if (h_prev != 0x0)
h_old = *h_prev ;
else
h_old.set_etat_zero() ;
double lambda = 1. ;
Scalar zero(*mp) ;
zero.set_etat_zero() ;
const Scalar& hrr_tt = hijtt( 1, 1 ) ;
Scalar eta_sr_tt = hijtt.eta() ;
eta_sr_tt.div_r() ;
const Scalar w_tt = hijtt.www() ;
Scalar hrr_new(*mp) ;
Scalar eta_over_r(*mp) ;
Scalar w_new(*mp) ;
for (int it=0; it<=it_max; it++) {
Scalar tilde_B = get_tilde_B_from_TT_trace(zero, h_old) ;
sol_Dirac_tilde_B(tilde_B, h_old, hrr_new, eta_over_r, w_new, 0x0, par_mat) ;
set_auxiliary(hrr_new+hrr_tt, eta_over_r+eta_sr_tt, mu_over_r,
w_new+w_tt, x_new, h_old - hrr_new-hrr_tt) ;
const Sym_tensor_trans& hij = *this ;
Scalar h_new = (1 + hij(1,1))*( hij(2,3)*hij(2,3) - hij(2,2)*hij(3,3) )
+ hij(1,2)*hij(1,2)*(1 + hij(3,3))
+ hij(1,3)*hij(1,3)*(1 + hij(2,2))
- hij(1,1)*(hij(2,2) + hij(3,3)) - 2*hij(1,2)*hij(1,3)*hij(2,3) ;
h_new.set_spectral_base(hrr_tt.get_spectral_base()) ;
double diff = max(max(abs(h_new - h_old))) ;
#ifndef NDEBUG
cout << "Sym_tensor_trans::set_tt_part_det_one : "
<< "iteration : " << it << " convergence on h: "
<< diff << endl ;
#endif
if (diff < precis) {
set_auxiliary(hrr_new+hrr_tt, eta_over_r+eta_sr_tt, mu_over_r,
w_new+w_tt, x_new, h_old - hrr_new-hrr_tt) ;
if (p_trace != 0x0) delete p_trace ;
p_trace = new Scalar(h_old) ;
if (p_tt != 0x0) delete p_tt ;
p_tt = new Sym_tensor_tt(hijtt) ;
p_tt->inc_dzpuis(2) ;
break ;
}
else {
h_old = lambda*h_new +(1-lambda)*h_old ;
}
if (it == it_max) {
cout << "Sym_tensor_trans:::set_AtBtt_det_one : convergence not reached \n" ;
cout << " for the required accuracy (" << precis << ") ! "
<< endl ;
abort() ;
}
}
return ;
}
void Sym_tensor_trans::set_AtB_trace(const Scalar& a_in, const Scalar& tb_in,
const Scalar& hh, Param* par_bc, Param* par_mat) {
// All this has a meaning only for spherical components:
assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ;
assert(a_in.check_dzpuis(2)) ;
assert(tb_in.check_dzpuis(2)) ;
assert(hh.check_dzpuis(0)) ;
assert(&a_in != p_aaa) ;
assert(&tb_in != p_tilde_b) ;
//Computation of mu and X from A
//-------------------------------
Scalar mu_over_r(*mp) ;
Scalar x_new(*mp) ;
sol_Dirac_A(a_in, mu_over_r, x_new, par_bc) ;
// Computation of the other potentials
//------------------------------------
Scalar hrr_new(*mp) ;
Scalar eta_over_r(*mp) ;
Scalar w_new(*mp) ;
sol_Dirac_tilde_B(tb_in, hh, hrr_new, eta_over_r, w_new, par_bc, par_mat) ;
set_auxiliary(hrr_new, eta_over_r, mu_over_r, w_new, x_new, hh - hrr_new) ;
if (p_aaa != 0x0) delete p_aaa ;
p_aaa = new Scalar(a_in) ;
if (p_tilde_b != 0x0) delete p_tilde_b ;
p_tilde_b = new Scalar(tb_in) ;
return ;
}
}
|