1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/*
* Functions to solve various PDEs for a divergence-free symmetric tensor.
*
* (see file sym_tensor.h for documentation).
*
*/
/*
* Copyright (c) 2005-2006 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char sym_tensor_trans_pde_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/sym_tensor_trans_pde.C,v 1.16 2014/10/13 08:53:43 j_novak Exp $" ;
/*
* $Id: sym_tensor_trans_pde.C,v 1.16 2014/10/13 08:53:43 j_novak Exp $
* $Log: sym_tensor_trans_pde.C,v $
* Revision 1.16 2014/10/13 08:53:43 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.15 2014/10/06 15:13:19 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.14 2010/10/11 10:38:34 j_novak
* *** empty log message ***
*
* Revision 1.13 2010/10/11 10:23:03 j_novak
* Removed methods Sym_tensor_trans::solve_hrr() and Sym_tensor_trans::set_WX_det_one(), as they are no longer relevant.
*
* Revision 1.12 2006/09/05 15:38:45 j_novak
* The fuctions sol_Dirac... are in a seperate file, with new parameters to
* control the boundary conditions.
*
* Revision 1.11 2006/08/31 12:13:22 j_novak
* Added an argument of type Param to Sym_tensor_trans::sol_Dirac_A().
*
* Revision 1.10 2006/06/28 07:48:26 j_novak
* Better treatment of some null cases.
*
* Revision 1.9 2006/06/21 15:42:47 j_novak
* Minor changes.
*
* Revision 1.8 2006/06/20 12:07:15 j_novak
* Improved execution speed for sol_Dirac_tildeB...
*
* Revision 1.7 2006/06/14 10:04:21 j_novak
* New methods sol_Dirac_l01, set_AtB_det_one and set_AtB_trace_zero.
*
* Revision 1.6 2006/06/13 13:30:12 j_novak
* New members sol_Dirac_A and sol_Dirac_tildeB (see documentation).
*
* Revision 1.5 2006/06/12 13:37:23 j_novak
* Added bounds in l (multipolar momentum) for Sym_tensor_trans::solve_hrr.
*
* Revision 1.4 2005/11/28 14:45:17 j_novak
* Improved solution of the Poisson tensor equation in the case of a transverse
* tensor.
*
* Revision 1.3 2005/11/24 14:07:54 j_novak
* Use of Matrice::annule_hard()
*
* Revision 1.2 2005/11/24 09:24:25 j_novak
* Corrected some missing references.
*
* Revision 1.1 2005/09/16 13:58:11 j_novak
* New Poisson solver for a Sym_tensor_trans.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/sym_tensor_trans_pde.C,v 1.16 2014/10/13 08:53:43 j_novak Exp $
*
*/
// C headers
#include <cassert>
#include <cmath>
// Lorene headers
#include "tensor.h"
#include "diff.h"
#include "proto.h"
#include "param.h"
namespace Lorene {
Sym_tensor_trans Sym_tensor_trans::poisson(const Scalar* h_guess) const {
// All this has a meaning only for spherical components...
assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ;
//## ... and affine mapping, for the moment!
const Map_af* mpaff = dynamic_cast<const Map_af*>(mp) ;
assert( mpaff!= 0x0) ;
Sym_tensor_trans resu(*mp, *triad, *met_div) ;
const Mg3d& gri = *mp->get_mg() ;
int np = gri.get_np(0) ;
int nt = gri.get_nt(0) ;
assert (nt > 4) ;
if (np == 1) {
int nz = gri.get_nzone() ;
double* bornes = new double[nz+1] ;
const double* alp = mpaff->get_alpha() ;
const double* bet = mpaff->get_beta() ;
for (int lz=0; lz<nz; lz++) {
assert (gri.get_np(lz) == np) ;
assert (gri.get_nt(lz) == nt) ;
switch (gri.get_type_r(lz)) {
case RARE: {
bornes[lz] = bet[lz] ;
break ;
}
case FIN: {
bornes[lz] = bet[lz] - alp[lz] ;
break ;
}
case UNSURR: {
bornes[lz] = double(1) / ( bet[lz] - alp[lz] ) ;
break ;
}
default: {
cout << "Sym_tensor_trans::poisson() : problem with the grid!"
<< endl ;
abort() ;
break ;
}
}
}
if (gri.get_type_r(nz-1) == UNSURR)
bornes[nz] = 1./(alp[nz-1] + bet[nz-1]) ;
else
bornes[nz] = alp[nz-1] + bet[nz-1] ;
const Mg3d& gr2 = *gri.get_non_axi() ;
Map_af mp2(gr2, bornes) ;
int np2 = ( np > 3 ? np : 4 ) ;
Sym_tensor sou_cart(mp2, CON, mp2.get_bvect_spher()) ;
for (int l=1; l<=3; l++)
for (int c=l; c<=3; c++) {
switch (this->operator()(l,c).get_etat() ) {
case ETATZERO: {
sou_cart.set(l,c).set_etat_zero() ;
break ;
}
case ETATUN: {
sou_cart.set(l,c).set_etat_one() ;
break ;
}
case ETATQCQ : {
sou_cart.set(l,c).allocate_all() ;
for (int lz=0; lz<nz; lz++)
for (int k=0; k<np2; k++)
for (int j=0; j<nt; j++)
for(int i=0; i<gr2.get_nr(lz); i++)
sou_cart.set(l,c).set_grid_point(lz, k, j, i)
= this->operator()(l,c).val_grid_point(lz, 0, j, i) ;
break ;
}
default: {
cout <<
"Sym_tensor_trans::poisson() : source in undefined state!"
<< endl ;
abort() ;
break ;
}
}
sou_cart.set(l,c).set_dzpuis(this->operator()(l,c).get_dzpuis()) ;
}
sou_cart.std_spectral_base() ;
sou_cart.change_triad(mp2.get_bvect_cart()) ;
Sym_tensor res_cart(mp2, CON, mp2.get_bvect_cart()) ;
for (int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
res_cart.set(i,j) = sou_cart(i,j).poisson() ;
res_cart.change_triad(mp2.get_bvect_spher()) ;
Scalar res_A(*mp) ; Scalar big_A = res_cart.compute_A() ;
Scalar res_B(*mp) ; Scalar big_B = res_cart.compute_tilde_B_tt() ;
switch (big_A.get_etat() ) {
case ETATZERO: {
res_A.set_etat_zero() ;
break ;
}
case ETATUN : {
res_A.set_etat_one() ;
break ;
}
case ETATQCQ : {
res_A.allocate_all() ;
for (int lz=0; lz<nz; lz++)
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++)
for(int i=0; i<gri.get_nr(lz); i++)
res_A.set_grid_point(lz, k, j, i)
= big_A.val_grid_point(lz, k, j, i) ;
break ;
}
default: {
cout <<
"Sym_tensor_trans::poisson() : res_A in undefined state!"
<< endl ;
abort() ;
break ;
}
}
res_A.set_spectral_base(big_A.get_spectral_base()) ;
int dzA = big_A.get_dzpuis() ;
res_A.set_dzpuis(dzA) ;
switch (big_B.get_etat() ) {
case ETATZERO: {
res_B.set_etat_zero() ;
break ;
}
case ETATUN : {
res_B.set_etat_one() ;
break ;
}
case ETATQCQ : {
res_B.allocate_all() ;
for (int lz=0; lz<nz; lz++)
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++)
for(int i=0; i<gri.get_nr(lz); i++)
res_B.set_grid_point(lz, k, j, i)
= big_B.val_grid_point(lz, k, j, i) ;
break ;
}
default: {
cout <<
"Sym_tensor_trans::poisson() : res_B in undefined state!"
<< endl ;
abort() ;
break ;
}
}
res_B.set_spectral_base(big_B.get_spectral_base()) ;
int dzB = big_B.get_dzpuis() ;
res_B.set_dzpuis(dzB) ;
resu.set_AtBtt_det_one(res_A, res_B, h_guess) ;
delete [] bornes ;
}
else {
assert (np >=4) ;
Sym_tensor_trans sou_cart = *this ;
sou_cart.change_triad(mp->get_bvect_cart()) ;
Sym_tensor res_cart(*mp, CON, mp->get_bvect_cart()) ;
for (int i=1; i<=3; i++)
for(int j=i; j<=3; j++)
res_cart.set(i,j) = sou_cart(i,j).poisson() ;
res_cart.change_triad(*triad) ;
resu.set_AtBtt_det_one(res_cart.compute_A(), res_cart.compute_tilde_B_tt(), h_guess) ;
}
#ifndef NDEBUG
Vector dive = resu.divergence(*met_div) ;
dive.dec_dzpuis(2) ;
maxabs(dive, "Sym_tensor_trans::poisson : divergence of the solution") ;
#endif
return resu ;
}
}
|