File: sym_ttt_poisson.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (227 lines) | stat: -rw-r--r-- 6,692 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
 *  Resolution of the TT tensor Poisson equation
 *
 *    (see file sym_tensor.h for documentation).
 *
 */

/*
 *   Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char sym_ttt_poisson_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/sym_ttt_poisson.C,v 1.5 2014/10/13 08:53:44 j_novak Exp $" ;

/*
 * $Id: sym_ttt_poisson.C,v 1.5 2014/10/13 08:53:44 j_novak Exp $
 * $Log: sym_ttt_poisson.C,v $
 * Revision 1.5  2014/10/13 08:53:44  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2004/12/28 10:37:24  j_novak
 * Better way of enforcing zero divergence.
 *
 * Revision 1.3  2004/12/27 14:33:12  j_novak
 * New algorithm for the tensor Poisson eq.
 *
 * Revision 1.2  2004/03/04 09:50:41  e_gourgoulhon
 * Method poisson: use of new methods khi() and set_khi_mu.
 *
 * Revision 1.1  2003/11/07 16:53:52  e_gourgoulhon
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/sym_ttt_poisson.C,v 1.5 2014/10/13 08:53:44 j_novak Exp $
 *
 */

// C headers
//#include <>

// Lorene headers
#include "tensor.h"
#include "param_elliptic.h"


namespace Lorene {
Sym_tensor_tt Sym_tensor_tt::poisson(int dzfin) const {

    // All this has a meaning only for spherical components...
    assert(dynamic_cast<const Base_vect_spher*>(triad) != 0x0) ; 
    //## ... and affine mapping, for the moment!
    assert(dynamic_cast<const Map_af*>(mp) != 0x0) ;
    assert( (dzfin == 0) || (dzfin == 2) ) ;
    Sym_tensor_tt resu(*mp, *triad, *met_div) ; 

    // Solution for the rr-component
    // ----------------------------

    const Scalar& source_rr = operator()(1,1) ;
    Scalar h_rr(*mp) ;
    int nz = mp->get_mg()->get_nzone() ;
   
    if (source_rr.get_etat() != ETATZERO) {

	//------------------------
	// The elliptic operator
	//------------------------
	  
	Param_elliptic param_hr(source_rr) ;
	for (int lz=0; lz<nz; lz++) 
	    param_hr.set_poisson_tens_rr(lz) ;
	  
	h_rr = source_rr.sol_elliptic(param_hr) ;
    }
    else
	h_rr.set_etat_zero() ;

    h_rr.inc_dzpuis(dzfin) ; //## can we improve here?
    resu.set(1,1) = h_rr ;

    // Solution for (eta / r) 
    //-----------------------
//     Scalar source_eta = - source_rr ;
//     source_eta.mult_r_dzpuis(3) ;
//     source_eta.mult_r_dzpuis(2) ;
//     h_rr.set_spectral_va().ylm() ;
//     Scalar tmp = 2*h_rr + h_rr.lapang() ;
//     if (dzfin == 0) 
// 	tmp.inc_dzpuis(2) ;
//     source_eta += tmp ;
//     source_eta = source_eta.primr() ;

//     source_eta.div_r_dzpuis(dzfin) ;

//     Scalar etasurr = (h_rr+source_eta).poisson_angu() ;

    Scalar source_eta = -resu(1,1).dsdr() ;
    source_eta.mult_r_dzpuis(dzfin) ;
    source_eta -= 3.*resu(1,1) ;
    Scalar etasurr = source_eta.poisson_angu() ;
		
    // Solution for mu
    // ---------------
	
    Scalar musurr = mu().poisson() ;
    musurr.div_r_dzpuis(dzfin) ;

    resu.set(1,1).set_spectral_va().ylm_i() ;
    
    Scalar** rcmp = resu.cmp ;

    Itbl idx(2) ;
    idx.set(0) = 1 ;	// r index
	
    // h^{r theta} : 
    // ------------
    idx.set(1) = 2 ;	// theta index
    *rcmp[position(idx)] = etasurr.dsdt() - musurr.stdsdp() ; 
    
    // h^{r phi} :
    // ------------
    idx.set(1) = 3 ;	// phi index
    *rcmp[position(idx)] = etasurr.stdsdp() + musurr.dsdt() ; 

    // h^{theta phi} and h^{phi phi}
    // -----------------------------
	
    //--------------  Computation of T^theta   --> taut : 
    
    Scalar tautst = resu(1,2).dsdr() ; 

    // dhrr contains  dh^{rt}/dr in all domains but the CED,    
    // in the CED:    r^2 dh^{rt}/dr        if dzfin = 0          (1)
    //                r^3 dh^{rt}/dr        if dzfin = 2          (2)
                                                    
    // Multiplication by r of dh^{rt}/dr (with the same dzpuis than h^{rt})
    tautst.mult_r_dzpuis(dzfin) ; 	
    
    // Addition of the remaining parts :	
    tautst += 3 * resu(1,2) - resu(1,1).dsdt() ; 
    tautst.mult_sint() ; 
	
    Scalar tmp = resu(1,1) ;
    tmp.mult_cost() ; 		// h^{rr} cos(th)
	
    tautst -= tmp ; 	// T^th / sin(th)
	
    Scalar taut = tautst ; 
    taut.mult_sint() ; 	// T^th
	

    //----------- Computation of T^phi   --> taup : 
    
    Scalar taupst = - resu(1,3).dsdr() ; 

    // dhrr contains  - dh^{rp}/dr in all domains but the CED,  
    // in the CED:    - r^2 dh^{rp}/dr        if dzfin = 0          (3)
    //                - r^3 dh^{rp}/dr        if dzfin = 2          (4)
                                                    	        
    // Multiplication by r of -dh^{rp}/dr  (with the same dzpuis than h^{rp})
    taupst.mult_r_dzpuis(dzfin) ; 	
                          
    // Addition of the remaining part :	
	
    taupst -= 3 * resu(1,3) ; 
    taupst.mult_sint() ; 	// T^ph / sin(th)
	
    Scalar taup = taupst ; 
    taup.mult_sint() ; 		// T^ph 
	
    //------------------- Computation of F and h^[ph ph}
    
    tmp = tautst ; 
    tmp.mult_cost() ; 	// T^th / tan(th)
	
    // dT^th/dth + T^th / tan(th) + 1/sin(th) dT^ph/dph :
    tmp = taut.dsdt() + tmp + taup.stdsdp() ;

    Scalar tmp2 (*mp) ;		
    tmp2 = tmp.poisson_angu() ;  // F
    tmp2.div_sint() ; 
    tmp2.div_sint() ; // h^{ph ph}
    
    idx.set(0) = 3 ;	// phi index
    idx.set(1) = 3 ;	// phi index
    *rcmp[position(idx)] = tmp2 ; 		// h^{ph ph} is updated
	
    
    //------------------- Computation of G and h^[th ph}
    
    tmp = taupst ; 
    tmp.mult_cost() ; // T^ph / tan(th)
    
    // - 1/sin(th) dT^th/dph + dT^ph/dth + T^ph / tan(th) :
    tmp = - taut.stdsdp() + taup.dsdt() + tmp ; 
    
    tmp2 = tmp.poisson_angu() ;  // G
    tmp2.div_sint() ; 
    tmp2.div_sint() ; // h^{th ph}
    
    idx.set(0) = 2 ;	// theta index
    idx.set(1) = 3 ;	// phi index
    *rcmp[position(idx)] = tmp2 ; 		// h^{th ph} is updated
    
    // h^{th th}  (from the trace-free condition)
    // ---------
    idx.set(1) = 2 ;	// theta index
    *rcmp[position(idx)] = - resu(1,1) - resu(3,3) ; 
    
     return resu ;   
}
}