1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*
* Methods of class Tensor for tensor calculus
*
*
*/
/*
* Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
*
* Copyright (c) 1999-2001 Philippe Grandclement (for preceding class Tenseur)
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char tensor_calculus_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/tensor_calculus.C,v 1.10 2014/10/13 08:53:44 j_novak Exp $" ;
/*
* $Id: tensor_calculus.C,v 1.10 2014/10/13 08:53:44 j_novak Exp $
* $Log: tensor_calculus.C,v $
* Revision 1.10 2014/10/13 08:53:44 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.9 2014/10/06 15:13:20 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.8 2004/02/26 22:49:45 e_gourgoulhon
* Added methods compute_derive_lie and derive_lie.
*
* Revision 1.7 2004/02/18 18:50:07 e_gourgoulhon
* -- Added new methods trace(...).
* -- Tensorial product moved to file tensor_calculus_ext.C, since it is not
* a method of class Tensor.
*
* Revision 1.6 2004/02/18 15:54:23 e_gourgoulhon
* Efficiency improved in method scontract: better handling of work (it is
* now considered as a reference on the relevant component of the result).
*
* Revision 1.5 2003/12/05 16:38:50 f_limousin
* Added method operator*
*
* Revision 1.4 2003/10/28 21:25:34 e_gourgoulhon
* Method contract renamed scontract.
*
* Revision 1.3 2003/10/11 16:47:10 e_gourgoulhon
* Suppressed the call to Ibtl::set_etat_qcq() after the construction
* of the Itbl's, thanks to the new property of the Itbl class.
*
* Revision 1.2 2003/10/06 20:52:22 e_gourgoulhon
* Added methods up, down and up_down.
*
* Revision 1.1 2003/10/06 15:13:38 e_gourgoulhon
* Tensor contraction.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/tensor_calculus.C,v 1.10 2014/10/13 08:53:44 j_novak Exp $
*
*/
// Headers C++
#include "headcpp.h"
// Headers C
#include <cstdlib>
#include <cassert>
#include <cmath>
// Headers Lorene
#include "tensor.h"
#include "metric.h"
//------------------//
// Trace //
//------------------//
namespace Lorene {
Tensor Tensor::trace(int ind_1, int ind_2) const {
// Les verifications :
assert( (ind_1 >= 0) && (ind_1 < valence) ) ;
assert( (ind_2 >= 0) && (ind_2 < valence) ) ;
assert( ind_1 != ind_2 ) ;
assert( type_indice(ind_1) != type_indice(ind_2) ) ;
// On veut ind_1 < ind_2 :
if (ind_1 > ind_2) {
int auxi = ind_2 ;
ind_2 = ind_1 ;
ind_1 = auxi ;
}
// On construit le resultat :
int val_res = valence - 2 ;
Itbl tipe(val_res) ;
for (int i=0 ; i<ind_1 ; i++)
tipe.set(i) = type_indice(i) ;
for (int i=ind_1 ; i<ind_2-1 ; i++)
tipe.set(i) = type_indice(i+1) ;
for (int i = ind_2-1 ; i<val_res ; i++)
tipe.set(i) = type_indice(i+2) ;
Tensor res(*mp, val_res, tipe, triad) ;
// Boucle sur les composantes de res :
Itbl jeux_indice_source(valence) ;
for (int i=0 ; i<res.get_n_comp() ; i++) {
Itbl jeux_indice_res(res.indices(i)) ;
for (int j=0 ; j<ind_1 ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j) ;
for (int j=ind_1+1 ; j<ind_2 ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j-1) ;
for (int j=ind_2+1 ; j<valence ; j++)
jeux_indice_source.set(j) = jeux_indice_res(j-2) ;
Scalar& work = res.set(jeux_indice_res) ;
work.set_etat_zero() ;
for (int j=1 ; j<=3 ; j++) {
jeux_indice_source.set(ind_1) = j ;
jeux_indice_source.set(ind_2) = j ;
work += (*cmp[position(jeux_indice_source)]) ;
}
}
return res ;
}
Tensor Tensor::trace(int ind1, int ind2, const Metric& gam) const {
// Les verifications :
assert( (ind1 >= 0) && (ind1 < valence) ) ;
assert( (ind2 >= 0) && (ind2 < valence) ) ;
assert( ind1 != ind2 ) ;
if ( type_indice(ind1) != type_indice(ind2) ) {
cout << "Tensor::trace(int, int, const Metric&) : Warning : \n"
<< " the two indices for the trace have opposite types,\n"
<< " hence the metric is useless !\n" ;
return trace(ind1, ind2) ;
}
else {
if ( type_indice(ind1) == COV ) {
return contract(gam.con(), 0, 1, *this, ind1, ind2) ;
}
else{
return contract(gam.cov(), 0, 1, *this, ind1, ind2) ;
}
}
}
Scalar Tensor::trace() const {
// Les verifications :
assert( valence == 2 ) ;
assert( type_indice(0) != type_indice(1) ) ;
Scalar res(*mp) ;
res.set_etat_zero() ;
for (int i=1; i<=3; i++) {
res += operator()(i,i) ;
}
return res ;
}
Scalar Tensor::trace(const Metric& gam) const {
assert( valence == 2 ) ;
if ( type_indice(0) != type_indice(1) ) {
cout << "Tensor::trace(const Metric&) : Warning : \n"
<< " the two indices have opposite types,\n"
<< " hence the metric is useless to get the trace !\n" ;
return trace() ;
}
else {
if ( type_indice(0) == COV ) {
return contract(gam.con(), 0, 1, *this, 0, 1) ;
}
else{
return contract(gam.cov(), 0, 1, *this, 0, 1) ;
}
}
}
//----------------------//
// Index manipulation //
//----------------------//
Tensor Tensor::up(int place, const Metric& met) const {
assert (valence != 0) ; // Aucun interet pour un scalaire...
assert ((place >=0) && (place < valence)) ;
Tensor auxi = Lorene::contract(met.con(), 1, *this, place) ;
// On doit remettre les indices a la bonne place ...
Itbl tipe(valence) ;
for (int i=0 ; i<valence ; i++)
tipe.set(i) = type_indice(i) ;
tipe.set(place) = CON ;
Tensor res(*mp, valence, tipe, triad) ;
Itbl place_auxi(valence) ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl place_res(res.indices(i)) ;
place_auxi.set(0) = place_res(place) ;
for (int j=1 ; j<place+1 ; j++)
place_auxi.set(j) = place_res(j-1) ;
place_res.set(place) = place_auxi(0) ;
for (int j=place+1 ; j<valence ; j++)
place_auxi.set(j) = place_res(j);
res.set(place_res) = auxi(place_auxi) ;
}
return res ;
}
Tensor Tensor::down(int place, const Metric& met) const {
assert (valence != 0) ; // Aucun interet pour un scalaire...
assert ((place >=0) && (place < valence)) ;
Tensor auxi = Lorene::contract(met.cov(), 1, *this, place) ;
// On doit remettre les indices a la bonne place ...
Itbl tipe(valence) ;
for (int i=0 ; i<valence ; i++)
tipe.set(i) = type_indice(i) ;
tipe.set(place) = COV ;
Tensor res(*mp, valence, tipe, triad) ;
Itbl place_auxi(valence) ;
for (int i=0 ; i<res.n_comp ; i++) {
Itbl place_res(res.indices(i)) ;
place_auxi.set(0) = place_res(place) ;
for (int j=1 ; j<place+1 ; j++)
place_auxi.set(j) = place_res(j-1) ;
place_res.set(place) = place_auxi(0) ;
for (int j=place+1 ; j<valence ; j++)
place_auxi.set(j) = place_res(j);
res.set(place_res) = auxi(place_auxi) ;
}
return res ;
}
Tensor Tensor::up_down(const Metric& met) const {
Tensor* auxi ;
Tensor* auxi_old = new Tensor(*this) ;
for (int i=0 ; i<valence ; i++) {
if (type_indice(i) == COV) {
auxi = new Tensor( auxi_old->up(i, met) ) ;
}
else{
auxi = new Tensor( auxi_old->down(i, met) ) ;
}
delete auxi_old ;
auxi_old = new Tensor(*auxi) ;
delete auxi ;
}
Tensor result(*auxi_old) ;
delete auxi_old ;
return result ;
}
//-----------------------//
// Lie derivative //
//-----------------------//
// Protected method
//-----------------
void Tensor::compute_derive_lie(const Vector& vv, Tensor& resu) const {
// Protections
// -----------
if (valence > 0) {
assert(vv.get_triad() == triad) ;
assert(resu.get_triad() == triad) ;
}
// Flat metric
// -----------
const Metric_flat* fmet ;
if (valence == 0) {
fmet = &(mp->flat_met_spher()) ;
}
else {
assert( triad != 0x0 ) ;
const Base_vect_spher* bvs =
dynamic_cast<const Base_vect_spher*>(triad) ;
if (bvs != 0x0) {
fmet = &(mp->flat_met_spher()) ;
}
else {
const Base_vect_cart* bvc =
dynamic_cast<const Base_vect_cart*>(triad) ;
if (bvc != 0x0) {
fmet = &(mp->flat_met_cart()) ;
}
else {
cerr << "Tensor::compute_derive_lie : unknown triad type !\n" ;
abort() ;
}
}
}
// Determination of the dzpuis parameter of the input --> dz_in
// ---------------------------------------------------
int dz_in = 0 ;
for (int ic=0; ic<n_comp; ic++) {
int dzp = cmp[ic]->get_dzpuis() ;
assert(dzp >= 0) ;
if (dzp > dz_in) dz_in = dzp ;
}
#ifndef NDEBUG
// Check : do all components have the same dzpuis ?
for (int ic=0; ic<n_comp; ic++) {
if ( !(cmp[ic]->check_dzpuis(dz_in)) ) {
cout << "######## WARNING #######\n" ;
cout << " Tensor::compute_derive_lie: the tensor components \n"
<< " do not have all the same dzpuis ! : \n"
<< " ic, dzpuis(ic), dz_in : " << ic << " "
<< cmp[ic]->get_dzpuis() << " " << dz_in << endl ;
}
}
#endif
// Initialisation to nabla_V T
// ---------------------------
resu = contract(vv, 0, derive_cov(*fmet), valence) ;
// Addition of the terms with derivatives of V (only if valence > 0)
// -------------------------------------------
if (valence > 0) {
const Tensor& dv = vv.derive_cov(*fmet) ; // gradient of V
Itbl ind1(valence) ; // working Itbl to store the indices of resu
Itbl ind0(valence) ; // working Itbl to store the indices of this
Scalar tmp(*mp) ; // working scalar
// loop on all the components of the output tensor:
int ncomp_resu = resu.get_n_comp() ;
for (int ic=0; ic<ncomp_resu; ic++) {
// indices corresponding to the component no. ic in the output tensor
ind1 = resu.indices(ic) ;
tmp = 0 ;
// Loop on the number of indices of this
for (int id=0; id<valence; id++) {
ind0 = ind1 ;
switch( type_indice(id) ) {
case CON : {
for (int k=1; k<=3; k++) {
ind0.set(id) = k ;
tmp -= operator()(ind0) * dv(ind1(id), k) ;
}
break ;
}
case COV : {
for (int k=1; k<=3; k++) {
ind0.set(id) = k ;
tmp += operator()(ind0) * dv(k, ind1(id)) ;
}
break ;
}
default : {
cerr <<
"Tensor::compute_derive_lie: unexpected type of index !\n" ;
abort() ;
break ;
}
} // end of switch on index type
} // end of loop on the number of indices of uu
if (dz_in > 0) tmp.dec_dzpuis() ; // to get the same dzpuis as
// nabla_V T
resu.set(ind1) += tmp ; // Addition to the nabla_V T term
} // end of loop on all the components of the output tensor
} // end of case valence > 0
}
// Public interface
//-----------------
Tensor Tensor::derive_lie(const Vector& vv) const {
Tensor resu(*mp, valence, type_indice, triad) ;
compute_derive_lie(vv, resu) ;
return resu ;
}
}
|