File: tensor_sym.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (389 lines) | stat: -rw-r--r-- 10,234 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 *  Methods of class Tensor_sym
 *
 *   (see file tensor.h for documentation)
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
 *
 *   Copyright (c) 1999-2001 Philippe Grandclement (for preceding class Tenseur)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char tensor_sym_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/tensor_sym.C,v 1.3 2014/10/13 08:53:44 j_novak Exp $" ;

/*
 * $Id: tensor_sym.C,v 1.3 2014/10/13 08:53:44 j_novak Exp $
 * $Log: tensor_sym.C,v $
 * Revision 1.3  2014/10/13 08:53:44  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.2  2014/10/06 15:13:20  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.1  2004/01/04 20:51:45  e_gourgoulhon
 * New class to deal with general tensors which are symmetric with
 * respect to two of their indices.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/tensor_sym.C,v 1.3 2014/10/13 08:53:44 j_novak Exp $
 *
 */

// Headers C
#include <cstdlib>
#include <cassert>
#include <cmath>

// Headers Lorene
#include "tensor.h"
#include "utilitaires.h"


			//--------------//
			// Constructors //
			//--------------//

// Standard constructor 
// --------------------
namespace Lorene {
Tensor_sym::Tensor_sym(const Map& map, int val, const Itbl& tipe, 
		 const Base_vect& triad_i, int index_sym1, int index_sym2) 
            : Tensor(map, val, tipe, 6*int(pow(3.,val-2)), triad_i),
              id_sym1(index_sym1),    
              id_sym2(index_sym2) {    
		
    // Des verifs :
    assert( valence >= 2 ) ;
    assert( (id_sym1 >=0) && (id_sym1 < valence) ) ;  
    assert( (id_sym2 >=0) && (id_sym2 < valence) ) ;  
    assert( id_sym1 != id_sym2 ) ; 

    // The symmetry indices must be of same type: 
    assert( tipe(id_sym1) == tipe(id_sym2) ) ; 
    
    // Possible re-ordering of the symmetry indices
    if (id_sym1 > id_sym2) {
        int tmp = id_sym1 ; 
        id_sym1 = id_sym2 ; 
        id_sym2 = tmp ; 
    }
    	
}



// Standard constructor when all the indices are of the same type
// --------------------------------------------------------------
Tensor_sym::Tensor_sym(const Map& map, int val, int tipe, 
		 const Base_vect& triad_i, int index_sym1, int index_sym2) 
            : Tensor(map, val, tipe, 6*int(pow(3.,val-2)), triad_i),
              id_sym1(index_sym1),    
              id_sym2(index_sym2) {    
		
    // Des verifs :
    assert( valence >= 2 ) ;
    assert( (id_sym1 >=0) && (id_sym1 < valence) ) ;  
    assert( (id_sym2 >=0) && (id_sym2 < valence) ) ;  
    assert( id_sym1 != id_sym2 ) ; 

    // Possible re-ordering of the symmetry indices
    if (id_sym1 > id_sym2) {
        int tmp = id_sym1 ; 
        id_sym1 = id_sym2 ; 
        id_sym2 = tmp ; 
    }
    	
}

// Constructor for a valence 3 symmetric tensor
// --------------------------------------------
Tensor_sym::Tensor_sym(const Map& map, int tipe0, int tipe1, int tipe2, 
                   const Base_vect& triad_i,
                   int index_sym1, int index_sym2) 
            : Tensor(map, 3, tipe0, 18, triad_i),
              id_sym1(index_sym1),    
              id_sym2(index_sym2) {    
    
    assert( (tipe0==COV) || (tipe0==CON) ) ;		
    assert( (tipe1==COV) || (tipe1==CON) ) ;		
    assert( (tipe2==COV) || (tipe2==CON) ) ;		

    type_indice.set(1) = tipe1 ; 
    type_indice.set(2) = tipe2 ; 

    assert( (id_sym1 >=0) && (id_sym1 < 3) ) ;  
    assert( (id_sym2 >=0) && (id_sym2 < 3) ) ;  
    assert( id_sym1 != id_sym2 ) ; 
    assert( type_indice(id_sym1) == type_indice(id_sym2) ) ; 

    // Possible re-ordering of the symmetry indices
    if (id_sym1 > id_sym2) {
        int tmp = id_sym1 ; 
        id_sym1 = id_sym2 ; 
        id_sym2 = tmp ; 
    }
    	
}



// Copy constructor
// ----------------
Tensor_sym::Tensor_sym(const Tensor_sym& source) 
            : Tensor(*source.mp, source.valence, source.type_indice, 
                     6*int(pow(3.,source.valence-2)) , *(source.triad)),
              id_sym1(source.id_sym1),    
              id_sym2(source.id_sym2) {    
                     
    for (int i=0 ; i<n_comp ; i++) {

        int posi = source.position(indices(i)) ;  // in case source belongs to
                                                  // a derived class of 
                                                  // Tensor_sym with a different
                                                  // storage of components 
	*(cmp[i]) = *(source.cmp[posi]) ;
    }
}   



	

// Constructor from a file
// -----------------------
Tensor_sym::Tensor_sym(const Map& map, const Base_vect& triad_i, FILE* fd)
			: Tensor(map, triad_i, fd) {
	
    fread_be(&id_sym1, sizeof(int), 1, fd) ;
    fread_be(&id_sym2, sizeof(int), 1, fd) ;
    
    assert( type_indice(id_sym1) == type_indice(id_sym2) ) ; 
    
}


			//--------------//
			//  Destructor  //
			//--------------//

Tensor_sym::~Tensor_sym() {

}

			//--------------//
			//  Assignment  //
			//--------------//


void Tensor_sym::operator=(const Tensor_sym& tt) {
    
    assert (valence == tt.valence) ;

    triad = tt.triad ; 
    id_sym1 = tt.id_sym1 ; 
    id_sym2 = tt.id_sym2 ; 

    for (int id=0 ; id<valence ; id++)
      assert(tt.type_indice(id) == type_indice(id)) ;
	
    for (int ic=0 ; ic<n_comp ; ic++) {
        int posi = tt.position(indices(ic)) ;
        *cmp[ic] = *(tt.cmp[posi]) ;
    }

    del_deriv() ;

}

void Tensor_sym::operator=(const Tensor& tt) {
    
    assert (valence == tt.get_valence()) ;

    triad = tt.get_triad() ; 

    for (int id=0 ; id<valence ; id++)
      assert(tt.type_indice(id) == type_indice(id)) ;

    // The symmetry indices must be of same type: 
    assert( tt.type_indice(id_sym1) == tt.type_indice(id_sym2) ) ; 

	
    for (int ic=0 ; ic<n_comp ; ic++) {
        int posi = tt.position(indices(ic)) ;
        *cmp[ic] = *(tt.cmp[posi]) ;
    }

    del_deriv() ;

}


			//--------------//
			//   Accessor   //
			//--------------//

int Tensor_sym::position(const Itbl& idx) const {
    
    // Protections:
    assert (idx.get_ndim() == 1) ;
    assert (idx.get_dim(0) == valence) ;
    for (int i=0 ; i<valence ; i++) {
	assert( (idx(i)>=1) && (idx(i)<=3) ) ;
    }
    
    // The two symmetric indices are moved to the end --> new index array idx0
    Itbl idx0(valence) ; 
    if (valence > 2) {
        for (int id=0 ; id<id_sym1; id++) {
            idx0.set(id) = idx(id) ; 
        }
        for (int id=id_sym1; id<id_sym2-1; id++) {
            idx0.set(id) = idx(id+1) ;
        }
        for (int id=id_sym2-1; id<valence-2; id++) {
            idx0.set(id) = idx(id+2) ; 
        }
        idx0.set(valence-2) = idx(id_sym1) ;  //## not used
        idx0.set(valence-1) = idx(id_sym2) ;  //## in what follows
    }
    
    // Values of the symmetric indices:
    int is1 = idx(id_sym1) ; 
    int is2 = idx(id_sym2) ; 
    
    // Reordering to ensure is1 <= is2 :
    if (is2 < is1) {
        int aux = is1 ; 
        is1 = is2 ; 
        is2 = aux ; 
    }

    // Position in the cmp array :
    int pos = 0 ; 
    for (int id=0 ; id<valence-2 ; id++) {
        pos = 3 * pos + idx0(id) - 1 ;  // all the values of each non symmetric
                                        // index occupy 3 "boxes"
    }
    
    pos = 6 * pos  ;   // all the values of the two symmetric
                       // indices occupy 6 "boxes"
    switch (is1) {
        case 1 : {
            pos += is2 - 1 ;     // (1,1), (1,2) and (1,3) stored respectively
            break ;              // in relative position 0, 1 and 2
        }        
        case 2 : {
            pos += is2 + 1 ;     // (2,2) and (2,3) stored respectively
            break ;              // in relative position 3 and  4
        }
        case 3 : {
            pos += 5 ;           // (3,3) stored in relative position 5
            break ; 
        }
    }
    
    return pos ;
}



Itbl Tensor_sym::indices(int place) const {

    assert( (place>=0) && (place<n_comp) ) ;
    
    // Index set with the two symmetric indices at the end:

    Itbl idx0(valence) ; 
    
    int reste = div(place, 6).rem ;
    place = int((place-reste)/6) ;
    
    if (reste<3) {
        idx0.set(valence-2) = 1 ;
	idx0.set(valence-1) = reste + 1 ;
    }
    
    if ( (reste>2) && (reste<5) ) {
	idx0.set(valence-2) = 2 ;
	idx0.set(valence-1) = reste - 1 ;
    }
    
    if (reste == 5) {
        idx0.set(valence-2) = 3 ;
        idx0.set(valence-1) = 3 ;
    }
    
    // The output is ready in the case of a valence 2 tensor: 
    if (valence == 2) return idx0 ; 
    
    for (int id=valence-3 ; id>=0 ; id--) {
	int ind = div(place, 3).rem ;
	place = int((place-ind)/3) ;
	idx0.set(id) = ind + 1 ; 
    }
	
    // Reorganization of the index set to put the two symmetric indices at
    // their correct positions:
    
    Itbl idx(valence) ; 
    
    for (int id=0 ; id<id_sym1; id++) {
        idx.set(id) = idx0(id) ; 
    }
    idx.set(id_sym1) = idx0(valence-2) ; 
    
    for (int id=id_sym1+1; id<id_sym2; id++) {
        idx.set(id) = idx0(id-1) ;
    }
    idx.set(id_sym2) = idx0(valence-1) ; 
    
    for (int id=id_sym2+1; id<valence; id++) {
        idx.set(id) = idx0(id-2) ; 
    }

    return idx ;
}
	

			//--------------//
			//    Outputs   //
			//--------------//

void Tensor_sym::sauve(FILE* fd) const {

    Tensor::sauve(fd) ; 
    
    fwrite_be(&id_sym1, sizeof(int), 1, fd) ;   
    fwrite_be(&id_sym2, sizeof(int), 1, fd) ;   

}









}