1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
/*
* Resolution of the divergence-free vector Poisson equation
*
* (see file vector.h for documentation).
*
*/
/*
* Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char vector_df_poisson_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_df_poisson.C,v 1.15 2014/10/13 08:53:44 j_novak Exp $" ;
/*
* $Id: vector_df_poisson.C,v 1.15 2014/10/13 08:53:44 j_novak Exp $
* $Log: vector_df_poisson.C,v $
* Revision 1.15 2014/10/13 08:53:44 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.14 2014/10/06 15:13:20 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.13 2005/02/15 09:45:22 j_novak
* Correction of an error in the matching.
*
* Revision 1.12 2005/02/09 16:53:11 j_novak
* Now V^r and eta are matched across domains, but not any of their derivatives.
*
* Revision 1.11 2005/02/09 14:52:01 j_novak
* Better solution in the shells.
*
* Revision 1.10 2005/02/09 13:20:27 j_novak
* Completely new way of solving the vector Poisson equation in the Div_free
* case: the system is inverted "as a whole" for V^r and eta. This works only
* with Map_af...
*
*
* $Header: /cvsroot/Lorene/C++/Source/Tensor/vector_df_poisson.C,v 1.15 2014/10/13 08:53:44 j_novak Exp $
*
*/
// C headers
#include <cassert>
#include <cmath>
// Lorene headers
#include "tensor.h"
#include "diff.h"
#include "proto.h"
#include "param.h"
namespace Lorene {
Vector_divfree Vector_divfree::poisson(Param& par ) const {
// All this has a meaning only for spherical components:
#ifndef NDEBUG
const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
assert(bvs != 0x0) ;
#endif
int nitermax = par.get_int() ;
int& niter = par.get_int_mod() ;
double relax = par.get_double() ;
double precis = par.get_double(1) ;
Cmp& ss_khi = par.get_cmp_mod(0) ;
Cmp& ss_mu = par.get_cmp_mod(1) ;
// Solution for the r-component
// ----------------------------
Scalar source_r = *(cmp[0]) ;
source_r.mult_r() ;
Param par_khi ;
par_khi.add_int(nitermax, 0) ;
par_khi.add_int_mod(niter, 0) ;
par_khi.add_double(relax, 0) ;
par_khi.add_double(precis, 1) ;
par_khi.add_cmp_mod(ss_khi, 0) ;
Scalar khi (*mp) ;
khi.set_etat_zero() ;
source_r.poisson(par_khi, khi) ;
khi.div_r() ; // khi now contains V^r
// Solution for mu
// ---------------
Param par_mu ;
par_mu.add_int(nitermax, 0) ;
par_mu.add_int_mod(niter, 0) ;
par_mu.add_double(relax, 0) ;
par_mu.add_double(precis, 1) ;
par_mu.add_cmp_mod(ss_mu, 0) ;
Scalar mu_resu (*mp) ;
mu_resu.set_etat_zero() ;
mu().poisson(par_mu, mu_resu) ;
// Final result
// ------------
Vector_divfree resu(*mp, *triad, *met_div) ;
resu.set_vr_mu(khi, mu_resu) ;
return resu ;
}
/*
* In the case without parameters, first is solved the equation for mu and then
* the system of equations for (eta, V^r) is inverted as a whole:
* d2 eta / dr2 + 2/r d eta / dr - 1/r d V^r / dr = S(eta)
* d V^r / dr + 2/r V^r - l(l+1)/r eta = 0 (div free condition)
*
* There is no l=0 contribution (divergence free in all space!).
* In the nucleus and the CED the system is inverted for h(r) and v(r) ,
* such that eta = r^2 h and V^r = r^2 v in the nucleus,
* in the compactified domain one has eta = u^2 h and V^r = u^2 v (where u=1/r);
* In the shells, both equations are multiplied by r.
* These methods are used only to get particular solutions.
*
* Homogeneous solutions are known analitically: r^(l-1) and/or 1/r^(l+2)
* It is then only possible to match eta and V^r, but not their derivatives,
* due to the div-free condition.
*/
Vector_divfree Vector_divfree::poisson() const {
const Map_af* mpaff = dynamic_cast<const Map_af*>(mp) ;
#ifndef NDEBUG
for (int i=0; i<3; i++)
assert(cmp[i]->check_dzpuis(4)) ;
// All this has a meaning only for spherical components:
const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
assert(bvs != 0x0) ;
//## ... and affine mapping, for the moment!
assert( mpaff != 0x0) ;
#endif
// Final result
// ------------
Vector_divfree resu(*mpaff, *triad, *met_div) ;
// Solution for mu
// ---------------
Scalar mu_resu = mu().poisson() ;
Scalar f_r(*mpaff) ;
if (cmp[0]->get_etat() == ETATZERO) { // no work needed ...
f_r.set_etat_zero() ;
resu.set_vr_mu(f_r, mu_resu) ;
return resu ;
}
// Some working objects
//---------------------
const Mg3d& mg = *mpaff->get_mg() ;
int nz = mg.get_nzone() ; int nzm1 = nz - 1;
assert(mg.get_type_r(0) == RARE) ;
assert(mg.get_type_r(nzm1) == UNSURR) ;
Scalar S_r = *cmp[0] ;
Scalar S_eta = eta() ;
S_r.set_spectral_va().ylm() ;
S_eta.set_spectral_va().ylm() ;
const Base_val& base = S_eta.get_spectral_va().base ;
Mtbl_cf sol_part_eta(mg, base) ; sol_part_eta.annule_hard() ;
Mtbl_cf sol_part_vr(mg, base) ; sol_part_vr.annule_hard() ;
Mtbl_cf solution_hom_un(mg, base) ; solution_hom_un.annule_hard() ;
Mtbl_cf solution_hom_deux(mg, base) ; solution_hom_deux.annule_hard() ;
// Build-up & inversion of the system for (eta, V^r) in each domain
//-----------------------------------------------------------------
// Nucleus
//--------
int nr = mg.get_nr(0) ;
int nt = mg.get_nt(0) ;
int np = mg.get_np(0) ;
double alpha = mpaff->get_alpha()[0] ;
double beta = mpaff->get_beta()[0] ;
int l_q = 0 ; int m_q = 0; int base_r = 0 ;
int nr0 = nr - 1 ; //one degree of freedom less because of division by r^2
// Loop on l and m
//----------------
for (int k=0 ; k<np+1 ; k++) {
for (int j=0 ; j<nt ; j++) {
base.give_quant_numbers(0, k, j, m_q, l_q, base_r) ;
if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q != 0) ) {
int dege1 = (l_q <3 ? 0 : 1) ; //degeneracy of eq.1
int dege2 = 0 ; //degeneracy of eq.2
int nr_eq1 = nr0 - dege1 ; //Eq.1 is for h (eta/r^2)
int nr_eq2 = nr0 - dege2 ; //Eq.2 is the div-free condition
int nrtot = nr_eq1 + nr_eq2 ;
Matrice oper(nrtot, nrtot) ; oper.set_etat_qcq() ;
Tbl sec_membre(nrtot) ; sec_membre.set_etat_qcq() ;
Diff_x2dsdx2 d2(base_r, nr) ; const Matrice& md2 = d2.get_matrice() ;
Diff_xdsdx xd(base_r, nr) ; const Matrice& mxd = xd.get_matrice() ;
Diff_id id(base_r, nr) ; const Matrice& mid = id.get_matrice() ;
// Building the operator
//----------------------
for (int lin=0; lin<nr_eq1; lin++) { //eq.1
for (int col=dege1; col<nr0; col++)
oper.set(lin,col-dege1)
= md2(lin,col) + 6*mxd(lin,col) + 6*mid(lin,col) ;
for (int col=dege2; col<nr0; col++)
oper.set(lin,col-dege2+nr_eq1) = -mxd(lin,col) -2*mid(lin,col) ;
}
for (int lin=0; lin<nr0; lin++) { //eq.2
for (int col=dege1; col<nr0; col++)
oper.set(lin+nr_eq1,col-dege1) = -l_q*(l_q+1)*mid(lin,col) ;
for (int col=dege2; col<nr0; col++)
oper.set(lin+nr_eq1, col-dege2+nr_eq1) = mxd(lin,col) + 4*mid(lin,col) ;
}
oper.set_lu() ;
// Filling the r.h.s
//------------------
for (int i=0; i<nr_eq1; i++) //eq.1
sec_membre.set(i) = (*S_eta.get_spectral_va().c_cf)(0, k, j, i) ;
for (int i=0; i<nr0; i++) //eq.2
sec_membre.set(i+nr_eq1) = 0 ;
// Inversion of the "big" operator
//--------------------------------
Tbl big_res = oper.inverse(sec_membre) ;
Tbl res_eta(nr) ; res_eta.set_etat_qcq() ;
Tbl res_vr(nr) ; res_vr.set_etat_qcq() ;
// Putting coefficients of h and v to individual arrays
//-----------------------------------------------------
for (int i=0; i<dege1; i++)
res_eta.set(i) = 0 ;
for (int i=dege1; i<nr0; i++)
res_eta.set(i) = big_res(i-dege1) ;
res_eta.set(nr0) = 0 ;
for (int i=0; i<dege2; i++)
res_vr.set(i) = 0 ;
for (int i=dege2; i<nr0; i++)
res_vr.set(i) = big_res(i-dege2+nr_eq1) ;
res_vr.set(nr0) = 0 ;
// Multiplication by xi^2 (the alpha^2 factor comes soon)
//-------------------------------------------------------
multx2_1d(nr, &res_eta.t, base_r) ;
multx2_1d(nr, &res_vr.t, base_r) ;
// Homogeneous solution (only r^(l-1) in the nucleus)
Tbl sol_hom = solh(nr, l_q-1, 0., base_r) ;
for (int i=0 ; i<nr ; i++) {
sol_part_eta.set(0, k, j, i) = alpha*alpha*res_eta(i) ;
sol_part_vr.set(0, k, j, i) = alpha*alpha*res_vr(i) ;
solution_hom_un.set(0, k, j, i) = sol_hom(i) ;
solution_hom_deux.set(0, k, j, i) = 0. ;
}
}
}
}
// Shells
//-------
for (int zone=1 ; zone<nzm1 ; zone++) {
nr = mg.get_nr(zone) ;
assert (nr > 5) ;
assert(nt == mg.get_nt(zone)) ;
assert(np == mg.get_np(zone)) ;
alpha = mpaff->get_alpha()[zone] ;
beta = mpaff->get_beta()[zone] ;
double ech = beta / alpha ;
// Loop on l and m
//----------------
for (int k=0 ; k<np+1 ; k++) {
for (int j=0 ; j<nt ; j++) {
base.give_quant_numbers(zone, k, j, m_q, l_q, base_r) ;
if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q != 0) ) {
int dege1 = 2 ; //degeneracy of eq.1
int dege2 = 0 ; //degeneracy of eq.2
int nr_eq1 = nr - dege1 ; //Eq.1 is for eta
int nr_eq2 = nr - dege2 ; //Eq.2 is the div-free condition
int nrtot = nr_eq1 + nr_eq2 + 1;
Matrice oper(nrtot, nrtot) ; oper.set_etat_qcq() ;
Tbl sec_membre(nrtot) ; sec_membre.set_etat_qcq() ;
Diff_x2dsdx2 x2d2(base_r, nr+1); const Matrice& m2d2 = x2d2.get_matrice() ;
Diff_xdsdx2 xd2(base_r, nr+1) ; const Matrice& mxd2 = xd2.get_matrice() ;
Diff_dsdx2 d2(base_r, nr+1) ; const Matrice& md2 = d2.get_matrice() ;
Diff_xdsdx xd(base_r, nr+1) ; const Matrice& mxd = xd.get_matrice() ;
Diff_dsdx d1(base_r, nr+1) ; const Matrice& md = d1.get_matrice() ;
Diff_id id(base_r, nr+1) ; const Matrice& mid = id.get_matrice() ;
// Building the operator
//----------------------
for (int lin=0; lin<nr_eq1; lin++) {
for (int col=dege1; col<nr; col++)
oper.set(lin,col-dege1)
= mxd2(lin,col) + ech*md2(lin,col) + 2*md(lin,col) ;
for (int col=dege2; col<nr+1; col++)
oper.set(lin,col-dege2+nr_eq1) = -md(lin,col) ;
}
for (int lin=0; lin<nr_eq2; lin++) {
for (int col=dege1; col<nr; col++)
oper.set(lin+nr_eq1,col-dege1) = -l_q*(l_q+1)*mid(lin,col) ;
for (int col=dege2; col<nr+1; col++)
oper.set(lin+nr_eq1, col-dege2+nr_eq1) =
mxd(lin,col) + ech*md(lin,col) + 2*mid(lin,col) ;
}
//Additional line to avoid spurious homogeneous solutions
//this line is the first one of the V^r eq.
for (int col=dege1; col<nr; col++)
oper.set(nrtot-1, col-dege1) = 0 ;
for (int col=dege2; col<nr+1; col++)
oper.set(nrtot-1, col-dege2+nr_eq1) =
m2d2(0,col) + ech*(2*mxd2(0,col) + ech*md2(0,col))
+4*(mxd(0,col) +ech*md(0,col))
+(2 - l_q*(l_q+1))*mid(0,col) ;
oper.set_lu() ;
// Filling the r.h.s
//------------------
Tbl sr(5) ; sr.set_etat_qcq() ;
Tbl seta(nr) ; seta.set_etat_qcq() ;
for (int i=0; i<5; i++) {
sr.set(i) = (*S_r.get_spectral_va().c_cf)(zone, k, j, i);
seta.set(i) = (*S_eta.get_spectral_va().c_cf)(zone, k, j, i) ;
}
for (int i=5; i<nr; i++)
seta.set(i) = (*S_eta.get_spectral_va().c_cf)(zone, k, j, i) ;
Tbl xsr= sr ; Tbl x2sr= sr ;
Tbl xseta= seta ;
multx2_1d(5, &x2sr.t, base_r) ; multx_1d(5, &xsr.t, base_r) ;
multx_1d(nr, &xseta.t, base_r) ;
for (int i=0; i<nr_eq1; i++)
sec_membre.set(i) = alpha*(alpha*xseta(i) + beta*seta(i)) ;
for (int i=0; i<nr_eq2; i++)
sec_membre.set(i+nr_eq1) = 0 ;
sec_membre.set(nr_eq1+nr_eq2) = alpha*alpha*x2sr(0) + 2*alpha*beta*xsr(0)
+ beta*beta*sr(0) ;
// Inversion of the "big" operator
//--------------------------------
Tbl big_res = oper.inverse(sec_membre) ;
Tbl res_eta(nr) ; res_eta.set_etat_qcq() ;
Tbl res_vr(nr) ; res_vr.set_etat_qcq() ;
// Putting coefficients of h and v to individual arrays
//-----------------------------------------------------
for (int i=0; i<dege1; i++)
res_eta.set(i) = 0 ;
for (int i=dege1; i<nr; i++)
res_eta.set(i) = big_res(i-dege1) ;
for (int i=0; i<dege2; i++)
res_vr.set(i) = 0 ;
for (int i=dege2; i<nr; i++)
res_vr.set(i) = big_res(i-dege2+nr_eq1) ;
//homogeneous solutions
Tbl sol_hom1 = solh(nr, l_q-1, ech, base_r) ;
Tbl sol_hom2 = solh(nr, l_q+1, ech, base_r) ;
for (int i=0 ; i<nr ; i++) {
sol_part_eta.set(zone, k, j, i) = res_eta(i) ;
sol_part_vr.set(zone, k, j, i) = res_vr(i) ;
solution_hom_un.set(zone, k, j, i) = sol_hom1(0,i) ;
solution_hom_deux.set(zone, k, j, i) = sol_hom2(1,i) ;
}
}
}
}
}
// Compactified external domain
//-----------------------------
nr = mg.get_nr(nzm1) ;
assert(nt == mg.get_nt(nzm1)) ;
assert(np == mg.get_np(nzm1)) ;
alpha = mpaff->get_alpha()[nzm1] ;
assert (nr > 4) ;
nr0 = nr - 2 ; //two degrees of freedom less because of division by r^2
// Loop on l and m
//----------------
for (int k=0 ; k<np+1 ; k++) {
for (int j=0 ; j<nt ; j++) {
base.give_quant_numbers(nzm1, k, j, m_q, l_q, base_r) ;
if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q != 0) ) {
int dege1 = 0; //degeneracy of eq.1
int dege2 = 1; //degeneracy of eq.2
int nr_eq1 = nr0 - dege1 ; //Eq.1 is for eta
int nr_eq2 = nr0 - dege2 ; //Eq.2 is the div-free condition
int nrtot = nr_eq1 + nr_eq2 ;
Matrice oper(nrtot, nrtot) ; oper.set_etat_qcq() ;
Tbl sec_membre(nrtot) ; sec_membre.set_etat_qcq() ;
Diff_x2dsdx2 x2d2(base_r, nr) ; const Matrice& m2d2 = x2d2.get_matrice() ;
Diff_xdsdx xd(base_r, nr) ; const Matrice& mxd = xd.get_matrice() ;
Diff_id id(base_r, nr) ; const Matrice& mid = id.get_matrice() ;
// Building the operator
//----------------------
for (int lin=0; lin<nr_eq1; lin++) {
for (int col=dege1; col<nr0; col++)
oper.set(lin,col-dege1)
= m2d2(lin,col) + 4*mxd(lin,col) + 2*mid(lin,col) ;
for (int col=dege2; col<nr0; col++)
oper.set(lin,col-dege2+nr_eq1) =
mxd(lin,col) + 2*mid(lin,col) ;
}
for (int lin=0; lin<nr_eq2; lin++) {
for (int col=dege1; col<nr0; col++)
oper.set(lin+nr_eq1,col-dege1) = l_q*(l_q+1)*mid(lin,col) ;
for (int col=dege2; col<nr0; col++)
oper.set(lin+nr_eq1, col-dege2+nr_eq1) = mxd(lin,col) ;
}
oper.set_lu() ;
// Filling the r.h.s
//------------------
for (int i=0; i<nr_eq1; i++)
sec_membre.set(i) = (*S_eta.get_spectral_va().c_cf)(nzm1, k, j, i) ;
for (int i=0; i<nr_eq2; i++)
sec_membre.set(i+nr_eq1) = 0 ;
Tbl big_res = oper.inverse(sec_membre) ;
Tbl res_eta(nr) ; res_eta.set_etat_qcq() ;
Tbl res_vr(nr) ; res_vr.set_etat_qcq() ;
// Putting coefficients of h and v to individual arrays
//-----------------------------------------------------
for (int i=0; i<dege1; i++)
res_eta.set(i) = 0 ;
for (int i=dege1; i<nr0; i++)
res_eta.set(i) = big_res(i-dege1) ;
res_eta.set(nr0) = 0 ;
res_eta.set(nr0+1) = 0 ;
for (int i=0; i<dege2; i++)
res_vr.set(i) = 0 ;
for (int i=dege2; i<nr0; i++)
res_vr.set(i) = big_res(i-dege2+nr_eq1) ;
res_vr.set(nr0) = 0 ;
res_vr.set(nr0+1) = 0 ;
// Multiplication by r^2
//-----------------------
Tbl res_v2(nr) ; res_v2.set_etat_qcq() ;
Tbl res_e2(nr) ; res_e2.set_etat_qcq() ;
mult2_xm1_1d_cheb(nr, res_eta.t, res_e2.t) ;
mult2_xm1_1d_cheb(nr, res_vr.t, res_v2.t) ;
// Homogeneous solution (only 1/r^(l+2) in the CED)
Tbl sol_hom = solh(nr, l_q+1, 0., base_r) ;
for (int i=0 ; i<nr ; i++) {
sol_part_eta.set(nzm1, k, j, i) = alpha*alpha*res_e2(i) ;
sol_part_vr.set(nzm1, k, j, i) = alpha*alpha*res_v2(i) ;
solution_hom_un.set(nzm1, k, j, i) = sol_hom(i) ;
solution_hom_deux.set(nzm1, k, j, i) = 0. ;
}
}
}
}
// Now let's match everything ...
//-------------------------------
// Resulting V^r & eta
Scalar vr(*mpaff) ; vr.set_etat_qcq() ;
vr.set_spectral_base(base) ;
vr.set_spectral_va().set_etat_cf_qcq() ;
Mtbl_cf& cf_vr = *vr.set_spectral_va().c_cf ;
cf_vr.annule_hard() ;
Scalar het(*mpaff) ; het.set_etat_qcq() ;
het.set_spectral_base(base) ;
het.set_spectral_va().set_etat_cf_qcq() ;
Mtbl_cf& cf_eta = *het.set_spectral_va().c_cf ;
cf_eta.annule_hard() ;
int taille = 2*nzm1 ;
Tbl sec_membre(taille) ;
Matrice systeme(taille, taille) ;
systeme.set_etat_qcq() ;
int ligne ; int colonne ;
// Loop on l and m
//----------------
for (int k=0 ; k<np+1 ; k++)
for (int j=0 ; j<nt ; j++) {
base.give_quant_numbers(0, k, j, m_q, l_q, base_r) ;
if ((nullite_plm(j, nt, k, np, base) == 1)&&(l_q != 0)) {
ligne = 0 ;
colonne = 0 ;
sec_membre.annule_hard() ;
for (int l=0; l<taille; l++)
for (int c=0; c<taille; c++)
systeme.set(l,c) = 0 ;
//Nucleus
nr = mg.get_nr(0) ;
alpha = mpaff->get_alpha()[0] ;
// value of x^(l-1) at 1 ...
systeme.set(ligne, colonne) = 1. ;
for (int i=0 ; i<nr ; i++)
sec_membre.set(ligne) -= sol_part_eta(0, k, j, i) ;
ligne++ ;
// ... and of its couterpart for V^r
systeme.set(ligne, colonne) = l_q;
for (int i=0; i<nr; i++)
sec_membre.set(ligne) -= sol_part_vr(0,k,j,i) ;
colonne++ ;
//shells
for (int zone=1 ; zone<nzm1 ; zone++) {
nr = mg.get_nr(zone) ;
alpha = mpaff->get_alpha()[zone] ;
double echelle = mpaff->get_beta()[zone]/alpha ;
ligne -- ;
//value of (x+echelle)^(l-1) at -1
systeme.set(ligne, colonne) = -pow(echelle-1., double(l_q-1)) ;
// value of 1/(x+echelle) ^(l+2) at -1
systeme.set(ligne, colonne+1) = -1/pow(echelle-1., double(l_q+2)) ;
for (int i=0 ; i<nr ; i++)
if (i%2 == 0)
sec_membre.set(ligne) += sol_part_eta(zone, k, j, i) ;
else sec_membre.set(ligne) -= sol_part_eta(zone, k, j, i) ;
ligne++ ;
// ... and their couterparts for V^r
systeme.set(ligne, colonne) = -l_q*pow(echelle-1., double(l_q-1)) ;
systeme.set(ligne, colonne+1) = (l_q+1)/pow(echelle-1., double(l_q+2));
for (int i=0 ; i<nr ; i++)
if (i%2 == 0)
sec_membre.set(ligne) += sol_part_vr(zone, k, j, i) ;
else sec_membre.set(ligne) -= sol_part_vr(zone, k, j, i) ;
ligne++ ;
//value of (x+echelle)^(l-1) at 1 :
systeme.set(ligne, colonne) = pow(echelle+1., double(l_q-1)) ;
// value of 1/(x+echelle)^(l+2) at 1 :
systeme.set(ligne, colonne+1) = 1./pow(echelle+1., double(l_q+2)) ;
for (int i=0 ; i<nr ; i++)
sec_membre.set(ligne) -= sol_part_eta(zone, k, j, i) ;
ligne ++ ;
//... and their couterparts for V^r
systeme.set(ligne, colonne) = l_q*pow(echelle+1., double(l_q-1)) ;
systeme.set(ligne, colonne+1) = -double(l_q+1)
/ pow(echelle+1., double(l_q+2)) ;
for (int i=0 ; i<nr ; i++)
sec_membre.set(ligne) -= sol_part_vr(zone, k, j, i);
colonne += 2 ;
}
//Compactified external domain
nr = mg.get_nr(nzm1) ;
alpha = mpaff->get_alpha()[nzm1] ;
ligne -- ;
//value of (x-1)^(l+2) at -1 :
systeme.set(ligne, colonne) = -pow(-2, double(l_q+2)) ;
for (int i=0 ; i<nr ; i++)
if (i%2 == 0) sec_membre.set(ligne) += sol_part_eta(nzm1, k, j, i) ;
else sec_membre.set(ligne) -= sol_part_eta(nzm1, k, j, i) ;
//... and of its couterpart for V^r
systeme.set(ligne+1, colonne) = double(l_q+1)*pow(-2, double(l_q+2)) ;
for (int i=0 ; i<nr ; i++)
if (i%2 == 0) sec_membre.set(ligne+1) += sol_part_vr(nzm1, k, j, i) ;
else sec_membre.set(ligne+1) -= sol_part_vr(nzm1, k, j, i) ;
// Solution of the system giving the coefficients for the homogeneous
// solutions
//-------------------------------------------------------------------
if (taille > 2) systeme.set_band(2,2) ;
else systeme.set_band(1,1) ;
systeme.set_lu() ;
Tbl facteurs(systeme.inverse(sec_membre)) ;
int conte = 0 ;
// everything is put to the right place, the same combination of hom.
// solutions (with some l or -(l+1) factors) must be used for V^r
//-------------------------------------------------------------------
nr = mg.get_nr(0) ; //nucleus
for (int i=0 ; i<nr ; i++) {
cf_eta.set(0, k, j, i) = sol_part_eta(0, k, j, i)
+facteurs(conte)*solution_hom_un(0, k, j, i) ;
cf_vr.set(0, k, j, i) = sol_part_vr(0, k, j, i)
+double(l_q)*facteurs(conte)*solution_hom_un(0, k, j, i) ;
}
conte++ ;
for (int zone=1 ; zone<nzm1 ; zone++) { //shells
nr = mg.get_nr(zone) ;
for (int i=0 ; i<nr ; i++) {
cf_eta.set(zone, k, j, i) =
sol_part_eta(zone, k, j, i)
+facteurs(conte)*solution_hom_un(zone, k, j, i)
+facteurs(conte+1)*solution_hom_deux(zone, k, j, i) ;
cf_vr.set(zone, k, j, i) = sol_part_vr(zone, k, j, i)
+double(l_q)*facteurs(conte)*solution_hom_un(zone, k, j, i)
-double(l_q+1)*facteurs(conte+1)*solution_hom_deux(zone, k, j, i) ;
}
conte+=2 ;
}
nr = mg.get_nr(nz-1) ; //compactified external domain
for (int i=0 ; i<nr ; i++) {
cf_eta.set(nzm1, k, j, i) = sol_part_eta(nzm1, k, j, i)
+facteurs(conte)*solution_hom_un(nzm1, k, j, i) ;
cf_vr.set(nzm1, k, j, i) = sol_part_vr(nzm1, k, j, i)
-double(l_q+1)*facteurs(conte)*solution_hom_un(nzm1, k, j, i) ;
}
} // End of nullite_plm
} //End of loop on theta
vr.set_spectral_va().ylm_i() ;
het.set_spectral_va().ylm_i() ;
resu.set_vr_eta_mu(vr, het, mu_resu) ;
return resu ;
}
}
|