File: vector_divfree_A.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (613 lines) | stat: -rw-r--r-- 18,770 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 *  Methods to impose the Dirac gauge: divergence-free condition.
 *
 *    (see file sym_tensor.h for documentation).
 *
 */

/*
 *   Copyright (c) 2006  Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char sol_Dirac_A_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_divfree_A.C,v 1.6 2014/10/13 08:53:44 j_novak Exp $" ;

/*
 * $Id: vector_divfree_A.C,v 1.6 2014/10/13 08:53:44 j_novak Exp $
 * $Log: vector_divfree_A.C,v $
 * Revision 1.6  2014/10/13 08:53:44  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2014/10/06 15:13:20  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.4  2013/06/05 15:10:43  j_novak
 * Suppression of FINJAC sampling in r. This Jacobi(0,2) base is now
 * available by setting colloc_r to BASE_JAC02 in the Mg3d constructor.
 *
 * Revision 1.3  2009/10/23 13:18:46  j_novak
 * Minor modifications
 *
 * Revision 1.2  2008/08/27 10:55:15  jl_cornou
 * Added the case of one zone, which is a nucleus for BC
 *
 * Revision 1.1  2008/08/27 09:01:27  jl_cornou
 * Methods for solving Dirac systems for divergence free vectors
 *
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/vector_divfree_A.C,v 1.6 2014/10/13 08:53:44 j_novak Exp $
 *
 */


// C headers
#include <cstdlib>
#include <cassert>
#include <cmath>

// Lorene headers
#include "metric.h"
#include "diff.h"
#include "proto.h"
#include "param.h"

//----------------------------------------------------------------------------------
//
//                               sol_Dirac_A
//
//----------------------------------------------------------------------------------

namespace Lorene {
void Vector_divfree::sol_Dirac_A(const Scalar& aaa, Scalar& tilde_vr, Scalar& tilde_eta,
				   const Param* par_bc) const {

    const Map_af* mp_aff = dynamic_cast<const Map_af*>(mp) ;
    assert(mp_aff != 0x0) ; //Only affine mapping for the moment

    const Mg3d& mgrid = *mp_aff->get_mg() ;
    assert(mgrid.get_type_r(0) == RARE)  ;
    if (aaa.get_etat() == ETATZERO) {
	tilde_vr = 0 ;
	tilde_eta = 0 ;
	return ;
    }
    assert(aaa.get_etat() != ETATNONDEF) ;
    int nz = mgrid.get_nzone() ;
    int nzm1 = nz - 1 ;
    bool ced = (mgrid.get_type_r(nzm1) == UNSURR) ;
    int n_shell = ced ? nz-2 : nzm1 ;
    int nz_bc = nzm1 ;
    if (par_bc != 0x0)
	if (par_bc->get_n_int() > 0) nz_bc = par_bc->get_int() ;
    n_shell = (nz_bc < n_shell ? nz_bc : n_shell) ;
    bool cedbc = (ced && (nz_bc == nzm1)) ; 
#ifndef NDEBUG
    if (!cedbc) {
	assert(par_bc != 0x0) ;
	assert(par_bc->get_n_tbl_mod() >= 3) ;
    }
#endif
    int nt = mgrid.get_nt(0) ;
    int np = mgrid.get_np(0) ;

    Scalar source = aaa ;
    Scalar source_coq = aaa ;
    source_coq.annule_domain(0) ;
    if (ced) source_coq.annule_domain(nzm1) ;
    source_coq.mult_r() ;
    source.set_spectral_va().ylm() ;
    source_coq.set_spectral_va().ylm() ;
    Base_val base = source.get_spectral_base() ;
    base.mult_x() ;

    tilde_vr.annule_hard() ;
    tilde_vr.set_spectral_base(base) ;
    tilde_vr.set_spectral_va().set_etat_cf_qcq() ;
    tilde_vr.set_spectral_va().c_cf->annule_hard() ;   
    tilde_eta.annule_hard() ;
    tilde_eta.set_spectral_base(base) ;
    tilde_eta.set_spectral_va().set_etat_cf_qcq() ;
    tilde_eta.set_spectral_va().c_cf->annule_hard() ;   
 
    Mtbl_cf sol_part_vr(mgrid, base) ; sol_part_vr.annule_hard() ;
    Mtbl_cf sol_part_eta(mgrid, base) ; sol_part_eta.annule_hard() ;
    Mtbl_cf sol_hom1_vr(mgrid, base) ; sol_hom1_vr.annule_hard() ;
    Mtbl_cf sol_hom1_eta(mgrid, base) ; sol_hom1_eta.annule_hard() ;
    Mtbl_cf sol_hom2_vr(mgrid, base) ; sol_hom2_vr.annule_hard() ;
    Mtbl_cf sol_hom2_eta(mgrid, base) ; sol_hom2_eta.annule_hard() ;

    int l_q, m_q, base_r ;

    //---------------
    //--  NUCLEUS ---
    //---------------
    {int lz = 0 ;  
    int nr = mgrid.get_nr(lz) ;
    double alpha = mp_aff->get_alpha()[lz] ;
    Matrice ope(2*nr, 2*nr) ;
    ope.set_etat_qcq() ;
	
    for (int k=0 ; k<np+1 ; k++) {
	for (int j=0 ; j<nt ; j++) {
	    // quantic numbers and spectral bases
	    base.give_quant_numbers(lz, k, j, m_q, l_q, base_r) ;
	    if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q > 0)) {
		Diff_dsdx od(base_r, nr) ; const Matrice& md = od.get_matrice() ;
		Diff_sx os(base_r, nr) ; const Matrice& ms = os.get_matrice() ;

		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin,col) = md(lin,col) + 2*ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin,col+nr) = -l_q*(l_q+1)*ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin+nr,col) = -ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin+nr,col+nr) = md(lin,col) + ms(lin,col) ;

		ope *= 1./alpha ;
		int ind1 = nr ;
		
		if (l_q==1) {
		ind1 += 1 ;
		int pari = 1 ;
		for (int col=0 ; col<nr; col++) {
		ope.set(nr-1,col) = pari ;
		ope.set(nr-1,col+nr) = -pari ;
		pari = - pari ;
		}
		ope.set(2*nr-1, nr) = 1;
		}
		else{
		for (int col=0; col<2*nr; col++) 
		    ope.set(ind1+nr-2, col) = 0 ;
		for (int col=0; col<2*nr; col++) {
		    ope.set(nr-1, col) = 0 ;
		    ope.set(2*nr-1, col) = 0 ;
		}
		int pari = 1 ;
		if (base_r == R_CHEBP) {
		    for (int col=0; col<nr; col++) {
			ope.set(nr-1, col) = pari ;
			ope.set(2*nr-1, col+nr) = pari ;
			pari = - pari ;
		    }
		}
		else { //In the odd case, the last coefficient must be zero!
		    ope.set(nr-1, nr-1) = 1 ;
		    ope.set(2*nr-1, 2*nr-1) = 1 ;
		}
		
		ope.set(ind1+nr-2, ind1) = 1 ; 
		}

		ope.set_lu() ;
		
		Tbl sec(2*nr) ;
		sec.set_etat_qcq() ;
		for (int lin=0; lin<nr; lin++)
		    sec.set(lin) = 0 ;
		for (int lin=0; lin<nr; lin++) 
		    sec.set(nr+lin) = (*source.get_spectral_va().c_cf)
			(lz, k, j, lin) ;
		sec.set(2*nr-1) = 0 ;
		sec.set(ind1+nr-2) = 0 ;
		Tbl sol = ope.inverse(sec) ;
		
		

		for (int i=0; i<nr; i++) {
		    sol_part_vr.set(lz, k, j, i) = sol(i) ;
		    sol_part_eta.set(lz, k, j, i) = sol(i+nr) ;
		}
		sec.annule_hard() ;
		sec.set(ind1+nr-2) = 1 ;
		
		sol = ope.inverse(sec) ;
		
		for (int i=0; i<nr; i++) {
		    sol_hom2_vr.set(lz, k, j, i) = sol(i) ;
		    sol_hom2_eta.set(lz, k, j, i) = sol(i+nr) ;
		}
	    }
	}
    }
    }

    //-------------
    // -- Shells --
    //-------------

    for (int lz=1; lz <= n_shell; lz++) {
	int nr = mgrid.get_nr(lz) ;
	assert(mgrid.get_nt(lz) == nt) ;
	assert(mgrid.get_np(lz) == np) ;
	double alpha = mp_aff->get_alpha()[lz] ;
	double ech = mp_aff->get_beta()[lz] / alpha ;
	Matrice ope(2*nr, 2*nr) ;
	ope.set_etat_qcq() ;
	
	for (int k=0 ; k<np+1 ; k++) {
	    for (int j=0 ; j<nt ; j++) {
		// quantic numbers and spectral bases
		base.give_quant_numbers(lz, k, j, m_q, l_q, base_r) ;
		if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q > 0)) {
		    Diff_xdsdx oxd(base_r, nr) ; const Matrice& mxd = oxd.get_matrice() ;
		    Diff_dsdx od(base_r, nr) ; const Matrice& md = od.get_matrice() ;
		    Diff_id oid(base_r, nr) ; const Matrice& mid = oid.get_matrice() ;

		    for (int lin=0; lin<nr; lin++) 
			for (int col=0; col<nr; col++) 
			    ope.set(lin,col) = mxd(lin,col) + ech*md(lin,col) 
				+ 2*mid(lin,col) ;
		    for (int lin=0; lin<nr; lin++) 
			for (int col=0; col<nr; col++) 
			    ope.set(lin,col+nr) = -l_q*(l_q+1)*mid(lin,col) ;
		    for (int lin=0; lin<nr; lin++) 
			for (int col=0; col<nr; col++) 
			    ope.set(lin+nr,col) = -mid(lin,col) ;
		    for (int lin=0; lin<nr; lin++) 
			for (int col=0; col<nr; col++) 
			    ope.set(lin+nr,col+nr) = mxd(lin,col) + ech*md(lin,col) + mid(lin,col) ;

		    int ind0 = 0 ;
		    int ind1 = nr ;
		    for (int col=0; col<2*nr; col++) {
			ope.set(ind0+nr-1, col) = 0 ;
			ope.set(ind1+nr-1, col) = 0 ;
		    }
		    ope.set(ind0+nr-1, ind0) = 1 ;
		    ope.set(ind1+nr-1, ind1) = 1 ;

		    ope.set_lu() ;

		    Tbl sec(2*nr) ;
		    sec.set_etat_qcq() ;
		    for (int lin=0; lin<nr; lin++)
			sec.set(lin) = 0 ;
		    for (int lin=0; lin<nr; lin++)
			sec.set(nr+lin) = (*source_coq.get_spectral_va().c_cf)
			    (lz, k, j, lin) ;
		    sec.set(ind0+nr-1) = 0 ;
		    sec.set(ind1+nr-1) = 0 ;
		    Tbl sol = ope.inverse(sec) ;
		    for (int i=0; i<nr; i++) {
 			sol_part_vr.set(lz, k, j, i) = sol(i) ;
 			sol_part_eta.set(lz, k, j, i) = sol(i+nr) ;
		    }
		
		
		    sec.annule_hard() ;
		    sec.set(ind0+nr-1) = 1 ;
		    sol = ope.inverse(sec) ;

		
		    for (int i=0; i<nr; i++) {
			sol_hom1_vr.set(lz, k, j, i) = sol(i) ;
			sol_hom1_eta.set(lz, k, j, i) = sol(i+nr) ;
		    }			
		    sec.set(ind0+nr-1) = 0 ;
		    sec.set(ind1+nr-1) = 1 ;
		    sol = ope.inverse(sec) ;

		
		
		    for (int i=0; i<nr; i++) {
			sol_hom2_vr.set(lz, k, j, i) = sol(i) ;
			sol_hom2_eta.set(lz, k, j, i) = sol(i+nr) ;
		    }			
		}
	    }
	}
    }

    //------------------------------
    // Compactified external domain
    //------------------------------
    if (cedbc) {int lz = nzm1 ;  
    int nr = mgrid.get_nr(lz) ;
    assert(mgrid.get_nt(lz) == nt) ;
    assert(mgrid.get_np(lz) == np) ;
    double alpha = mp_aff->get_alpha()[lz] ;
    Matrice ope(2*nr, 2*nr) ;
    ope.set_etat_qcq() ;
	
    for (int k=0 ; k<np+1 ; k++) {
	for (int j=0 ; j<nt ; j++) {
	    // quantic numbers and spectral bases
	    base.give_quant_numbers(lz, k, j, m_q, l_q, base_r) ;
	    if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q > 0)) {
		Diff_dsdx od(base_r, nr) ; const Matrice& md = od.get_matrice() ;
		Diff_sx os(base_r, nr) ; const Matrice& ms = os.get_matrice() ;


		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin,col) = - md(lin,col) + 2*ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin,col+nr) = -l_q*(l_q+1)*ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin+nr,col) = -ms(lin,col) ;
		for (int lin=0; lin<nr; lin++) 
		    for (int col=0; col<nr; col++) 
			ope.set(lin+nr,col+nr) = -md(lin,col) + ms(lin,col) ;

		ope *= 1./alpha ;
		int ind0 = 0 ;
		int ind1 = nr ;
		for (int col=0; col<2*nr; col++) {
		    ope.set(ind0+nr-1, col) = 0 ;
		    ope.set(ind1+nr-2, col) = 0 ;
		    ope.set(ind1+nr-1, col) = 0 ;
		}
		for (int col=0; col<nr; col++) {
		    ope.set(ind0+nr-1, col+ind0) = 1 ;
		    ope.set(ind1+nr-1, col+ind1) = 1 ;
		}
		ope.set(ind1+nr-2, ind1+1) = 1 ;

		ope.set_lu() ;

		Tbl sec(2*nr) ;
		sec.set_etat_qcq() ;
		for (int lin=0; lin<nr; lin++)
		    sec.set(lin) = 0 ;
		for (int lin=0; lin<nr; lin++)
		    sec.set(nr+lin) = (*source.get_spectral_va().c_cf)
			(lz, k, j, lin) ;
		sec.set(ind0+nr-1) = 0 ;
		sec.set(ind1+nr-2) = 0 ;
		sec.set(ind1+nr-1) = 0 ;
 		Tbl sol = ope.inverse(sec) ;

		for (int i=0; i<nr; i++) {
		    sol_part_vr.set(lz, k, j, i) = sol(i) ;
		    sol_part_eta.set(lz, k, j, i) = sol(i+nr) ;
		}
		sec.annule_hard() ;
		sec.set(ind1+nr-2) = 1 ;
		sol = ope.inverse(sec) ;
		for (int i=0; i<nr; i++) {
		    sol_hom1_vr.set(lz, k, j, i) = sol(i) ;
		    sol_hom1_eta.set(lz, k, j, i) = sol(i+nr) ;
		}
	    }
	}
    }
    }

    int taille = 2*nz_bc + 1;
    if (cedbc) taille-- ;
    Mtbl_cf& mvr = *tilde_vr.set_spectral_va().c_cf ;
    Mtbl_cf& meta = *tilde_eta.set_spectral_va().c_cf ;
	
    Tbl sec_membre(taille) ; 
    Matrice systeme(taille, taille) ; 
    int ligne ;  int colonne ;
    Tbl pipo(1) ;
    const Tbl& mub = (cedbc ? pipo : par_bc->get_tbl_mod(2) );
    double c_vr = (cedbc ? 0 : par_bc->get_tbl_mod(0)(0) ) ;
    double d_vr = (cedbc ? 0 : par_bc->get_tbl_mod(0)(1) ) ;
    double c_eta = (cedbc ? 0 : par_bc->get_tbl_mod(0)(2) ) ;
    double d_eta = (cedbc ? 0 : par_bc->get_tbl_mod(0)(3) ) ;

	

    Mtbl_cf dhom1_vr = sol_hom1_vr ; 
    Mtbl_cf dhom2_vr = sol_hom2_vr ; 
    Mtbl_cf dpart_vr = sol_part_vr ; 
    Mtbl_cf dhom1_eta = sol_hom1_eta ; 
    Mtbl_cf dhom2_eta = sol_hom2_eta ; 
    Mtbl_cf dpart_eta = sol_part_eta ; 
    if (!cedbc) {
	dhom1_vr.dsdx() ;
	dhom2_vr.dsdx() ;
	dpart_vr.dsdx() ;
	dhom1_eta.dsdx() ;
	dhom2_eta.dsdx() ;
	dpart_eta.dsdx() ;
    }
	
    // Loop on l and m
    //----------------
    int nr ;
    for (int k=0 ; k<np+1 ; k++)
	for (int j=0 ; j<nt ; j++) {
	    base.give_quant_numbers(0, k, j, m_q, l_q, base_r) ;
	    if ((nullite_plm(j, nt, k, np, base) == 1) && (l_q > 0)) {
		ligne = 0 ;
		colonne = 0 ;
		systeme.annule_hard() ;
		sec_membre.annule_hard() ;


		if ((nz==1)&&(mgrid.get_type_r(0) == RARE)) {
		// Only one zone, which is a nucleus
		double alpha = mp_aff->get_alpha()[nz_bc] ;
		systeme.set(ligne, colonne) = 
		    c_vr*sol_hom2_vr.val_out_bound_jk(nz_bc, j, k) 
		    + d_vr*dhom2_vr.val_out_bound_jk(nz_bc, j, k) / alpha 
		    + c_eta*sol_hom2_eta.val_out_bound_jk(nz_bc, j, k) 
		    + d_eta*dhom2_eta.val_out_bound_jk(nz_bc, j, k) / alpha ;
		
		sec_membre.set(ligne) -= c_vr*sol_part_vr.val_out_bound_jk(nz_bc, j, k) 
		    + d_vr*dpart_vr.val_out_bound_jk(nz_bc, j, k)/alpha
		    + c_eta*sol_part_eta.val_out_bound_jk(nz_bc, j, k) 
		    + d_eta*dpart_eta.val_out_bound_jk(nz_bc, j, k)/alpha
		    - mub(k, j) ;
		}
		else {
		// General case, two zones at least
		//Nucleus 
		systeme.set(ligne, colonne) = sol_hom2_vr.val_out_bound_jk(0, j, k) ;
		sec_membre.set(ligne) = -sol_part_vr.val_out_bound_jk(0, j, k) ;
		ligne++ ;

		systeme.set(ligne, colonne) = sol_hom2_eta.val_out_bound_jk(0, j, k) ;
		sec_membre.set(ligne) = -sol_part_eta.val_out_bound_jk(0, j, k) ;
		colonne++ ;

		//shells
		for (int zone=1 ; zone<nz_bc ; zone++) {
		    nr = mgrid.get_nr(zone) ;
		    ligne-- ;

		    //Condition at x = -1
		    systeme.set(ligne, colonne) = 
			- sol_hom1_vr.val_in_bound_jk(zone, j, k) ;
		    systeme.set(ligne, colonne+1) = 
			- sol_hom2_vr.val_in_bound_jk(zone, j, k) ;

		    sec_membre.set(ligne) += sol_part_vr.val_in_bound_jk(zone, j, k) ;
		    ligne++ ;

		    systeme.set(ligne, colonne) = 
			- sol_hom1_eta.val_in_bound_jk(zone, j, k) ;
		    systeme.set(ligne, colonne+1) = 
			- sol_hom2_eta.val_in_bound_jk(zone, j, k) ;

		    sec_membre.set(ligne) += sol_part_eta.val_in_bound_jk(zone, j, k) ;
		    ligne++ ;

		    // Condition at x=1
		    systeme.set(ligne, colonne) = 
			sol_hom1_vr.val_out_bound_jk(zone, j, k) ;
		    systeme.set(ligne, colonne+1) = 
			sol_hom2_vr.val_out_bound_jk(zone, j, k) ;

		    sec_membre.set(ligne) -= sol_part_vr.val_out_bound_jk(zone, j, k) ;
		    ligne++ ;

		    systeme.set(ligne, colonne) = 
			sol_hom1_eta.val_out_bound_jk(zone, j, k) ;
		    systeme.set(ligne, colonne+1) = 
			sol_hom2_eta.val_out_bound_jk(zone, j, k) ;

		    sec_membre.set(ligne) -= sol_part_eta.val_out_bound_jk(zone, j, k) ;
		    
		    colonne += 2 ;
		}
    
		//Last  domain	 
		nr = mgrid.get_nr(nz_bc) ;
		double alpha = mp_aff->get_alpha()[nz_bc] ;
		ligne-- ;
		    
		//Condition at x = -1
		systeme.set(ligne, colonne) = 
		    - sol_hom1_vr.val_in_bound_jk(nz_bc, j, k) ;
		if (!cedbc) systeme.set(ligne, colonne+1) = 
				- sol_hom2_vr.val_in_bound_jk(nz_bc, j, k) ;
		
		sec_membre.set(ligne) += sol_part_vr.val_in_bound_jk(nz_bc, j, k) ;
		ligne++ ;
		    
		systeme.set(ligne, colonne) = 
		    - sol_hom1_eta.val_in_bound_jk(nz_bc, j, k) ;
		if (!cedbc) systeme.set(ligne, colonne+1) = 
				- sol_hom2_eta.val_in_bound_jk(nz_bc, j, k) ;
		    
		sec_membre.set(ligne) += sol_part_eta.val_in_bound_jk(nz_bc, j, k) ;
		ligne++ ;

		if (!cedbc) {// Special condition at x=1
		systeme.set(ligne, colonne) = 
		    c_vr*sol_hom1_vr.val_out_bound_jk(nz_bc, j, k) 
		    + d_vr*dhom1_vr.val_out_bound_jk(nz_bc, j, k) / alpha 
		    + c_eta*sol_hom1_eta.val_out_bound_jk(nz_bc, j, k) 
		    + d_eta*dhom1_eta.val_out_bound_jk(nz_bc, j, k) / alpha ;
		systeme.set(ligne, colonne+1) = 
		    c_vr*sol_hom2_vr.val_out_bound_jk(nz_bc, j, k) 
		    + d_vr*dhom2_vr.val_out_bound_jk(nz_bc, j, k) / alpha
		    + c_eta*sol_hom2_eta.val_out_bound_jk(nz_bc, j, k) 
		    + d_eta*dhom2_eta.val_out_bound_jk(nz_bc, j, k) / alpha ;

		sec_membre.set(ligne) -= c_vr*sol_part_vr.val_out_bound_jk(nz_bc, j, k) 
		    + d_vr*dpart_vr.val_out_bound_jk(nz_bc, j, k)/alpha
		    + c_eta*sol_part_eta.val_out_bound_jk(nz_bc, j, k) 
		    + d_eta*dpart_eta.val_out_bound_jk(nz_bc, j, k)/alpha
		    - mub(k, j) ;
		}
		}

		// Solution of the system giving the coefficients for the homogeneous 
		// solutions
		//-------------------------------------------------------------------
		systeme.set_lu() ;
		Tbl facteur = systeme.inverse(sec_membre) ;
		int conte = 0 ;

		
		// everything is put to the right place...
		//----------------------------------------
 		nr = mgrid.get_nr(0) ; //nucleus
 		for (int i=0 ; i<nr ; i++) {
		    mvr.set(0, k, j, i) = sol_part_vr(0, k, j, i)
			+ facteur(conte)*sol_hom2_vr(0, k, j, i) ;
		    meta.set(0, k, j, i) = sol_part_eta(0, k, j, i)
			+ facteur(conte)*sol_hom2_eta(0, k, j, i) ;
 		}
 		conte++ ;
 		for (int zone=1 ; zone<=n_shell ; zone++) { //shells
 		    nr = mgrid.get_nr(zone) ;
 		    for (int i=0 ; i<nr ; i++) {
		    mvr.set(zone, k, j, i) = sol_part_vr(zone, k, j, i)
			+ facteur(conte)*sol_hom1_vr(zone, k, j, i) 
			+ facteur(conte+1)*sol_hom2_vr(zone, k, j, i) ;
			
		    meta.set(zone, k, j, i) = sol_part_eta(zone, k, j, i)
			+ facteur(conte)*sol_hom1_eta(zone, k, j, i) 
			+ facteur(conte+1)*sol_hom2_eta(zone, k, j, i) ;
 		    }
 		    conte+=2 ;
 		}
		if (cedbc) {
		    nr = mgrid.get_nr(nzm1) ; //compactified external domain
		    for (int i=0 ; i<nr ; i++) {
			mvr.set(nzm1, k, j, i) = sol_part_vr(nzm1, k, j, i)
			    + facteur(conte)*sol_hom1_vr(nzm1, k, j, i) ;
			
			meta.set(nzm1, k, j, i) = sol_part_eta(nzm1, k, j, i)
			    + facteur(conte)*sol_hom1_eta(nzm1, k, j, i) ;
		    }
		}

	    } // End of nullite_plm  
	} //End of loop on theta
	
	    
    if (tilde_vr.set_spectral_va().c != 0x0) 
	delete tilde_vr.set_spectral_va().c ;
    tilde_vr.set_spectral_va().c = 0x0 ;
    tilde_vr.set_spectral_va().ylm_i() ;

    if (tilde_eta.set_spectral_va().c != 0x0) 
	delete tilde_eta.set_spectral_va().c ;
    tilde_eta.set_spectral_va().c = 0x0 ;
    tilde_eta.set_spectral_va().ylm_i() ;



} 
}