File: vector_etamu.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (214 lines) | stat: -rw-r--r-- 5,003 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 *  Methods of class Vector related to eta and mu
 *
 *   (see file vector.h for documentation)
 *
 */

/*
 *   Copyright (c) 2005 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char vector_etamu_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $" ;

/*
 * $Id: vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $
 * $Log: vector_etamu.C,v $
 * Revision 1.4  2014/10/13 08:53:45  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:13:21  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2008/08/27 08:52:23  jl_cornou
 * Added fonctions for angular potential A
 *
 * Revision 1.1  2005/02/14 13:01:50  j_novak
 * p_eta and p_mu are members of the class Vector. Most of associated functions
 * have been moved from the class Vector_divfree to the class Vector.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Tensor/vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $
 *
 */

// Headers C
#include <cstdlib>
#include <cassert>

// Headers Lorene
#include "tensor.h"

			//--------------//
			//     eta      //
			//--------------//
			
			
namespace Lorene {
const Scalar& Vector::eta() const {


    if (p_eta == 0x0) {   // a new computation is necessary
	
	// All this has a meaning only for spherical components:
#ifndef NDEBUG 
	const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
	assert(bvs != 0x0) ; 
#endif
	
	// eta is computed from its definition:
	Scalar sou_eta = *cmp[1] ;  //V^th
	sou_eta.div_tant() ;
	sou_eta += cmp[1]->dsdt() + cmp[2]->stdsdp();
		
	// Resolution of the angular Poisson equation for eta
	// --------------------------------------------------
	p_eta = new Scalar( sou_eta.poisson_angu() ) ; 
	
    }

    return *p_eta ; 

}


			//--------------//
			//     mu       //
			//--------------//
			
			
const Scalar& Vector::mu() const {


    if (p_mu == 0x0) {   // a new computation is necessary
	
	// All this has a meaning only for spherical components:
#ifndef NDEBUG 
	const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
	assert(bvs != 0x0) ; 
#endif
	
	Scalar tmp = *cmp[2] ; 	// V^ph
	tmp.div_tant() ; 		// V^ph / tan(th)
	
	// dV^ph/dth + V^ph/tan(th) - 1/sin(th) dV^th/dphi 
	tmp += cmp[2]->dsdt() - cmp[1]->stdsdp() ; 
	
	// Resolution of the angular Poisson equation for mu
	// --------------------------------------------------
	p_mu = new Scalar( tmp.poisson_angu() ) ;  
	
    }
    
    return *p_mu ; 

}

			//-----------//
			//    A      //
			//-----------//

const Scalar& Vector::A() const {
	
	
	if (p_A == 0x0) {   // A new computation is necessary
	
		// All this has a meaning only for spherical components :
#ifndef NDEBUG 
	const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
	assert(bvs != 0x0) ; 
#endif
	
	// p_eta doit ĂȘtre calculĂ©
	if (p_eta == 0x0) { Scalar etatmp = this->eta(); }

	Scalar tmp = -*cmp[0] ;   // -V^r
	tmp.div_r_dzpuis(2);		 // -V^r/r

	Scalar eta_tilde = *p_eta ;
	Scalar etad = eta_tilde.dsdr() ; 
	eta_tilde.div_r_dzpuis(2);
	etad.set_dzpuis(2);
	tmp += etad + eta_tilde ; // d eta / dr + eta/r

	p_A = new Scalar (tmp) ;
	}
	
	return *p_A ;
}
	




			//----------------//
			//  update_vtvp   //
			//----------------//
			

void Vector::update_vtvp() {

    assert( (p_eta != 0x0) && (p_mu != 0x0) ) ; 

    // V^theta :
    *cmp[1] = p_eta->dsdt() - p_mu->stdsdp() ; 

    // V^phi : 
    *cmp[2] = p_eta->stdsdp() + p_mu->dsdt() ; 
    
    Scalar* p_eta_tmp = p_eta ;  //## in order not to delete p_eta and p_mu
    p_eta = 0x0 ;
    Scalar* p_mu_tmp = p_mu ;
    p_mu = 0x0 ;	
    Vector::del_deriv() ;
    
    p_eta = p_eta_tmp ;
    p_mu = p_mu_tmp ;
    
}			


void Vector::set_vr_eta_mu(const Scalar& vr_i, const Scalar& eta_i,
			   const Scalar& mu_i) {
    
    // All this has a meaning only for spherical components:
    assert( dynamic_cast<const Base_vect_spher*>(triad) != 0x0 ) ; 
    assert(&vr_i.get_mp() == &eta_i.get_mp()) ; 

    del_deriv() ; 
    
    // V^r
    *cmp[0] = vr_i ; 

    p_eta = new Scalar( eta_i ) ; 	// eta
    
    p_mu = new Scalar( mu_i ) ; 	// mu 
		
    update_vtvp() ;

    return ;
}





}