File: vector_poisson.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (646 lines) | stat: -rw-r--r-- 18,270 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/*
 *  Methods for solving vector Poisson equation.
 *
 *    (see file vector.h for documentation).
 *
 */

/*
 *   Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char vector_poisson_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_poisson.C,v 1.24 2014/10/13 08:53:45 j_novak Exp $" ;

/*
 * $Id: vector_poisson.C,v 1.24 2014/10/13 08:53:45 j_novak Exp $
 * $Log: vector_poisson.C,v $
 * Revision 1.24  2014/10/13 08:53:45  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.23  2014/10/06 15:13:21  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.22  2005/02/14 13:01:50  j_novak
 * p_eta and p_mu are members of the class Vector. Most of associated functions
 * have been moved from the class Vector_divfree to the class Vector.
 *
 * Revision 1.21  2005/01/10 15:36:09  j_novak
 * In method 5: added transformation back from the Ylm base.
 *
 * Revision 1.20  2004/12/23 10:23:06  j_novak
 * Improved method 5 in the case when some components are zero.
 * Changed Vector_divfree::poisson to deduce eta from the equation. 
 *
 * Revision 1.19  2004/08/24 09:14:50  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.18  2004/07/27 09:40:05  j_novak
 * Yet another method for solving vector Poisson eq. with spherical coordinates.
 *
 * Revision 1.17  2004/06/14 15:15:58  j_novak
 * New method (No.4) to solve the vector Poisson eq. The output is continuous
 * for all (spherical) components.
 *
 * Revision 1.16  2004/05/26 07:30:59  j_novak
 * Version 1.15 was not good.
 *
 * Revision 1.15  2004/05/25 15:15:47  f_limousin
 * Function Vector::poisson with parameters now returns a Vector (the
 * result) instead of void.
 *
 * Revision 1.12  2004/03/26 17:05:24  j_novak
 * Added new method n.3 using Tenseur::poisson_vect_oohara
 *
 * Revision 1.11  2004/03/11 08:48:45  f_limousin
 * Implement method Vector::poisson with parameters, only with method
 * 2 yet.
 *
 * Revision 1.10  2004/03/10 16:38:38  e_gourgoulhon
 * Modified the prototype of poisson with param. to let it
 * agree with declaration in vector.h.
 *
 * Revision 1.9  2004/03/03 09:07:03  j_novak
 * In Vector::poisson(double, int), the flat metric is taken from the mapping.
 *
 * Revision 1.8  2004/02/24 17:00:25  j_novak
 * Added a forgotten term.
 *
 * Revision 1.7  2004/02/24 09:46:20  j_novak
 * Correction to cope with SGI compiler's warnings.
 *
 * Revision 1.6  2004/02/22 15:47:46  j_novak
 * Added 2 more methods to solve the vector poisson equation. Method 1 is not
 * tested yet.
 *
 * Revision 1.5  2004/02/20 10:53:41  j_novak
 * Minor modifs.
 *
 * Revision 1.4  2004/02/16 17:40:14  j_novak
 * Added a version of poisson with the flat metric as argument (avoids
 * unnecessary calculations by decompose_div)
 *
 * Revision 1.3  2003/10/29 11:04:34  e_gourgoulhon
 * dec2_dpzuis() replaced by dec_dzpuis(2).
 * inc2_dpzuis() replaced by inc_dzpuis(2).
 *
 * Revision 1.2  2003/10/22 13:08:06  j_novak
 * Better handling of dzpuis flags
 *
 * Revision 1.1  2003/10/20 15:15:42  j_novak
 * New method Vector::poisson().
 *
 *
 * $Headers: $
 *
 */

//C headers
#include <cstdlib>
#include <cmath>

// Lorene headers
#include "metric.h"
#include "tenseur.h"
#include "param.h"
#include "param_elliptic.h"
#include "proto.h"

namespace Lorene {
Vector Vector::poisson(double lambda, const Metric_flat& met_f, int method) 
  const {
 
  bool nullite = true ;
  for (int i=0; i<3; i++) {
    assert(cmp[i]->check_dzpuis(4)) ;
    if (cmp[i]->get_etat() != ETATZERO) nullite = false ;
  }
  assert ((method>=0) && (method<7)) ;

  Vector resu(*mp, CON, triad) ;
  if (nullite)
    resu.set_etat_zero() ;
  else {

    switch (method) {
    
    case 0 : {

      Scalar poten(*mp) ;
      if (fabs(lambda+1) < 1.e-8)
	poten.set_etat_zero() ;
      else {
	poten = (potential(met_f) / (lambda + 1)).poisson() ;
      }
      
      Vector grad = poten.derive_con(met_f) ;
      grad.dec_dzpuis(2) ;
      
      return ( div_free(met_f).poisson() + grad) ;
      break ;
    }
      
    case 1 : {
      
      Scalar divf(*mp) ;
      if (fabs(lambda+1) < 1.e-8)
	divf.set_etat_zero() ;
      else {
	divf = (potential(met_f) / (lambda + 1)) ;
      }
      
      int nz = mp->get_mg()->get_nzone() ;

      //-----------------------------------
      // Removal of the l=0 part of div(F)
      //-----------------------------------
      Scalar div_lnot0 = divf ;
      div_lnot0.div_r_dzpuis(4) ;
      Scalar source_r(*mp) ;
      Valeur& va_div = div_lnot0.set_spectral_va() ;
      if (div_lnot0.get_etat() != ETATZERO) {
	va_div.coef() ;
	va_div.ylm() ;
	for (int lz=0; lz<nz; lz++) {
	  int np = mp->get_mg()->get_np(lz) ;
	  int nt = mp->get_mg()->get_nt(lz) ;
	  int nr = mp->get_mg()->get_nr(lz) ;
	  if (va_div.c_cf->operator()(lz).get_etat() != ETATZERO)
	    for (int k=0; k<np+1; k++) 
	      for (int j=0; j<nt; j++) {
		int l_q, m_q, base_r ;
		if (nullite_plm(j, nt, k, np, va_div.base) == 1) {
		  donne_lm(nz, lz, j, k, va_div.base, m_q, l_q, base_r) ;
		  if (l_q == 0) 
		    for (int i=0; i<nr; i++) 
		      va_div.c_cf->set(lz, k, j, i) = 0. ;
		}
	      }
	}
	source_r.set_etat_qcq() ;
	source_r.set_spectral_va() = 2*(*va_div.c_cf) ; //2*div(F)
	source_r.set_spectral_va().ylm_i() ;
	source_r.set_dzpuis(4) ;
      }
      else 
	source_r.set_etat_zero() ;
	   
      //------------------------
      // Other source terms ....
      //------------------------
      source_r += *(cmp[0]) - lambda*divf.dsdr() ;
      Scalar f_r(*mp) ;
      if (source_r.get_etat() != ETATZERO) {

	  //------------------------
	  // The elliptic operator
	  //------------------------
	  Param_elliptic param_fr(source_r) ;
	  for (int lz=0; lz<nz; lz++) 
	      param_fr.set_poisson_vect_r(lz) ;
	  
	  f_r = source_r.sol_elliptic(param_fr) ;
      }
      else
	  f_r.set_etat_zero() ;
            
      divf.dec_dzpuis(1) ;
      Scalar source_eta = divf - f_r.dsdr() ;
      source_eta.mult_r_dzpuis(0) ;
      source_eta -= 2*f_r ;
      resu.set_vr_eta_mu(f_r, source_eta.poisson_angu(), mu().poisson());
      
      break ;
      
    }

    case 2 : {
      
      Tenseur source_p(*mp, 1, CON, mp->get_bvect_spher() ) ;
      source_p.set_etat_qcq() ;
      for (int i=0; i<3; i++) {
	source_p.set(i) = Cmp(*cmp[i]) ;
      }
      source_p.change_triad(mp->get_bvect_cart()) ;
      Tenseur vect_auxi (*mp, 1, CON, mp->get_bvect_cart()) ;
      vect_auxi.set_etat_qcq() ;
      Tenseur scal_auxi (*mp) ;
      scal_auxi.set_etat_qcq() ;
      
      Tenseur resu_p(source_p.poisson_vect(lambda, vect_auxi, scal_auxi)) ;
      resu_p.change_triad(mp->get_bvect_spher() ) ;
      
      for (int i=1; i<=3; i++) 
	resu.set(i) = resu_p(i-1) ;
      
      break ;
    }
      
    case 3 : {
      
      Tenseur source_p(*mp, 1, CON, mp->get_bvect_spher() ) ;
      source_p.set_etat_qcq() ;
      for (int i=0; i<3; i++) {
	source_p.set(i) = Cmp(*cmp[i]) ;
      }
      source_p.change_triad(mp->get_bvect_cart()) ;
      Tenseur scal_auxi (*mp) ;
      scal_auxi.set_etat_qcq() ;
      
      Tenseur resu_p(source_p.poisson_vect_oohara(lambda, scal_auxi)) ;
      resu_p.change_triad(mp->get_bvect_spher() ) ;
      
      for (int i=1; i<=3; i++) 
	resu.set(i) = resu_p(i-1) ;
      
      break ;
    }

    case 4 : {
      Scalar divf(*mp) ;
      if (fabs(lambda+1) < 1.e-8)
	divf.set_etat_zero() ;
      else {
	divf = (potential(met_f) / (lambda + 1)) ;
      }
      
      int nz = mp->get_mg()->get_nzone() ;

      //-----------------------------------
      // Removal of the l=0 part of div(F)
      //-----------------------------------
      Scalar div_tmp = divf ;
      div_tmp.div_r_dzpuis(4) ;
      Scalar source_r(*mp) ;
      Valeur& va_div = div_tmp.set_spectral_va() ;
      if (div_tmp.get_etat() != ETATZERO) {
	va_div.ylm() ;
	for (int lz=0; lz<nz; lz++) {
	  int np = mp->get_mg()->get_np(lz) ;
	  int nt = mp->get_mg()->get_nt(lz) ;
	  int nr = mp->get_mg()->get_nr(lz) ;
	  if (va_div.c_cf->operator()(lz).get_etat() != ETATZERO)
	    for (int k=0; k<np+1; k++) 
	      for (int j=0; j<nt; j++) {
		int l_q, m_q, base_r ;
		if (nullite_plm(j, nt, k, np, va_div.base) == 1) {
		  donne_lm(nz, lz, j, k, va_div.base, m_q, l_q, base_r) ;
		  if (l_q == 0) 
		    for (int i=0; i<nr; i++) 
		      va_div.c_cf->set(lz, k, j, i) = 0. ;
		}
	      }
	}
	source_r.set_etat_qcq() ;
	source_r.set_spectral_va() = 2*(*va_div.c_cf) ; //2*div(F)
	source_r.set_spectral_va().ylm_i() ;
	source_r.set_dzpuis(4) ;
      }
      else 
	source_r.set_etat_zero() ;
	   
      //------------------------
      // Other source terms ....
      //------------------------
      source_r += *(cmp[0]) - lambda*divf.dsdr() ;
      Scalar f_r(*mp) ;
      if (source_r.get_etat() != ETATZERO) {

	  //------------------------
	  // The elliptic operator
	  //------------------------
	  Param_elliptic param_fr(source_r) ;
	  for (int lz=0; lz<nz; lz++) 
	      param_fr.set_poisson_vect_r(lz) ;
	  
	  f_r = source_r.sol_elliptic(param_fr) ;
      }
      else
	  f_r.set_etat_zero() ;

      //--------------------------
      // Equation for eta 
      //--------------------------
      Scalar source_eta = *cmp[1] ;
      source_eta.mult_sint() ;
      source_eta = source_eta.dsdt() ;
      source_eta.div_sint() ;
      source_eta = (source_eta + cmp[2]->stdsdp()).poisson_angu() ;

      Scalar dfrsr = f_r.dsdr() ;
      dfrsr.div_r_dzpuis(4) ;
      Scalar frsr2 = f_r ;
      frsr2.div_r_dzpuis(2) ;
      frsr2.div_r_dzpuis(4) ;

      Valeur& va_dfr = dfrsr.set_spectral_va() ;
      Valeur& va_fsr = frsr2.set_spectral_va() ;
      va_dfr.ylm() ;
      va_fsr.ylm() ;
            
      //Since the operator depends on the domain, the source
      //must be transformed accordingly.
      Valeur& va_eta = source_eta.set_spectral_va() ;
      if (source_eta.get_etat() == ETATZERO) source_eta.annule_hard() ;
      va_eta.ylm() ;
      for (int lz=0; lz<nz; lz++) {
	bool ced = (mp->get_mg()->get_type_r(lz) == UNSURR) ;
	int np = mp->get_mg()->get_np(lz) ;
	int nt = mp->get_mg()->get_nt(lz) ;
	int nr = mp->get_mg()->get_nr(lz) ;
	if (va_eta.c_cf->operator()(lz).get_etat() != ETATZERO)
	  for (int k=0; k<np+1; k++) 
	    for (int j=0; j<nt; j++) {
	      int l_q, m_q, base_r ;
	      if (nullite_plm(j, nt, k, np, va_eta.base) == 1) {
		donne_lm(nz, lz, j, k, va_eta.base, m_q, l_q, base_r) ;
		if (l_q > 0) 
		  for (int i=0; i<nr; i++) {
 		    if (va_div.c_cf->operator()(lz).get_etat() != ETATZERO) 
 		      va_eta.c_cf->set(lz, k, j, i) 
			-= (lambda + 2. / double(ced ? -l_q : (l_q+1) )) 
 			* va_div.c_cf->operator()(lz, k, j, i) ;
 		    if (va_fsr.c_cf->operator()(lz).get_etat() != ETATZERO) {
 		      va_eta.c_cf->set(lz, k, j, i) 
 			+= 2. / double(ced ? -l_q : (l_q+1) ) 
 			* va_dfr.c_cf->operator()(lz, k, j, i) ;
 		      va_eta.c_cf->set(lz, k, j, i)
 			-= 2.*( ced ? double(l_q+2)/double(l_q)
			       : double(l_q-1)/double(l_q+1) ) 
 			* va_fsr.c_cf->set(lz, k, j, i) ;
 		    }
		  } //Loop on r
	      } //nullite_plm
	    } //Loop on theta
      } // Loop on domains
      if (va_eta.c != 0x0) {
	delete va_eta.c;
	va_eta.c = 0x0 ;
      }
      va_eta.ylm_i() ;

      //------------------------
      // The elliptic operator
      //------------------------
      Param_elliptic param_eta(source_eta) ; 
      for (int lz=0; lz<nz; lz++) 
	param_eta.set_poisson_vect_eta(lz) ;

      resu.set_vr_eta_mu(f_r, source_eta.sol_elliptic(param_eta), mu().poisson()) ;
      break ;
      
    }
      
    case 5 : {
      
      Scalar divf(*mp) ;
      if (fabs(lambda+1) < 1.e-8)
	divf.set_etat_zero() ;
      else {
	divf = (potential(met_f) / (lambda + 1)) ;
      }
      
      int nz = mp->get_mg()->get_nzone() ;

      //-----------------------------------
      // Removal of the l=0 part of div(F)
      //-----------------------------------
      Scalar div_lnot0 = divf ;
      div_lnot0.div_r_dzpuis(4) ;
      Scalar source_r(*mp) ;
      Valeur& va_div = div_lnot0.set_spectral_va() ;
      if (div_lnot0.get_etat() != ETATZERO) {
	va_div.coef() ;
	va_div.ylm() ;
	for (int lz=0; lz<nz; lz++) {
	  int np = mp->get_mg()->get_np(lz) ;
	  int nt = mp->get_mg()->get_nt(lz) ;
	  int nr = mp->get_mg()->get_nr(lz) ;
	  if (va_div.c_cf->operator()(lz).get_etat() != ETATZERO)
	    for (int k=0; k<np+1; k++) 
	      for (int j=0; j<nt; j++) {
		int l_q, m_q, base_r ;
		if (nullite_plm(j, nt, k, np, va_div.base) == 1) {
		  donne_lm(nz, lz, j, k, va_div.base, m_q, l_q, base_r) ;
		  if (l_q == 0) 
		    for (int i=0; i<nr; i++) 
		      va_div.c_cf->set(lz, k, j, i) = 0. ;
		}
	      }
	}
	source_r.set_etat_qcq() ;
	source_r.set_spectral_va() = 2*(*va_div.c_cf) ; //2*div(F)
	source_r.set_spectral_va().ylm_i() ;
	source_r.set_dzpuis(4) ;
      }
      else 
	source_r.set_etat_zero() ;
	   
      //------------------------
      // Other source terms ....
      //------------------------
      source_r += *(cmp[0]) - lambda*divf.dsdr() ;
      Scalar f_r(*mp) ;
      if (source_r.get_etat() != ETATZERO) {

	  //------------------------
	  // The elliptic operator
	  //------------------------
	  
	  Param_elliptic param_fr(source_r) ;
	  for (int lz=0; lz<nz; lz++) 
	      param_fr.set_poisson_vect_r(lz) ;
	  
	  f_r = source_r.sol_elliptic(param_fr) ;
      }
      else
	  f_r.set_etat_zero() ;
	  
      Scalar source_eta = - *(cmp[0]) ;
      source_eta.mult_r_dzpuis(3) ;
      source_eta -= (lambda+2.)*divf ;
      source_eta.dec_dzpuis() ;
      f_r.set_spectral_va().ylm() ;
      Scalar tmp = 2*f_r + f_r.lapang() ;
      tmp.div_r_dzpuis(2) ;
      source_eta += tmp ;
      tmp = (1.+lambda)*divf ;
      tmp.mult_r_dzpuis(0) ;
      tmp += f_r ;
      source_eta = source_eta.primr() ;
      f_r.set_spectral_va().ylm_i() ;
      resu.set_vr_eta_mu(f_r, (tmp+source_eta).poisson_angu(), mu().poisson()) ;      
      break ;
      
    }

    case 6 : {
	
	poisson_block(lambda, resu) ;
	break ;

    }
    default : {
      cout << "Vector::poisson : unexpected type of method !" << endl 
	   << "  method = " << method << endl ; 
      abort() ;
      break ; 
    }
      
    } // End of switch  

  } // End of non-null case

  return resu ;

}

Vector Vector::poisson(double lambda, int method) const {
 
  const Base_vect_spher* tspher = dynamic_cast<const Base_vect_spher*>(triad) ;
  const Base_vect_cart* tcart = dynamic_cast<const Base_vect_cart*>(triad) ;

  assert ((tspher != 0x0) || (tcart != 0x0)) ;
  const Metric_flat* met_f = 0x0 ;

  if (tspher != 0x0) {
    assert (tcart == 0x0) ;
    met_f = &(mp->flat_met_spher()) ;
  }

  if (tcart != 0x0) {
    assert (tspher == 0x0) ;
    met_f = &(mp->flat_met_cart()) ;
  }

  return ( poisson(lambda, *met_f, method) );
    
}

// Version with parameters
// -----------------------

Vector Vector::poisson(const double lambda, Param& par, int method) const {

    
    for (int i=0; i<3; i++)
	assert(cmp[i]->check_dzpuis(4)) ;

    assert ((method==0) || (method==2)) ;

    Vector resu(*mp, CON, triad) ;

    switch (method) {
	
	case 0 : {

    Metric_flat met_local(*mp, *triad) ;
    int nitermax = par.get_int(0) ; 
    int& niter = par.get_int_mod(0) ; 
    double  relax = par.get_double(0) ; 
    double precis = par.get_double(1) ;     
    Cmp& ss_phi = par.get_cmp_mod(0) ;
    Cmp& ss_khi = par.get_cmp_mod(1) ;
    Cmp& ss_mu = par.get_cmp_mod(2) ;

    Param par_phi ; 
    par_phi.add_int(nitermax, 0) ;
    par_phi.add_int_mod(niter, 0) ;
    par_phi.add_double(relax, 0) ;
    par_phi.add_double(precis, 1) ;
    par_phi.add_cmp_mod(ss_phi, 0) ;
    
    Scalar poten(*mp) ;
    if (fabs(lambda+1) < 1.e-8)
	poten.set_etat_zero() ;
    else {
	Scalar tmp = potential(met_local) / (lambda + 1) ;
	tmp.inc_dzpuis(2) ;
	tmp.poisson(par_phi, poten) ;
    }
    
    Vector grad = poten.derive_con(met_local) ;
    grad.dec_dzpuis(2) ;
    
    Param par_free ;
    par_free.add_int(nitermax, 0) ;
    par_free.add_int_mod(niter, 0) ;
    par_free.add_double(relax, 0) ;
    par_free.add_double(precis, 1) ;
    par_free.add_cmp_mod(ss_khi, 0) ;
    par_free.add_cmp_mod(ss_mu, 1) ;
   
    return  div_free(met_local).poisson(par_free) + grad ;
    break ;
  }



	case 2 : {
	
    Tenseur source_p(*mp, 1, CON, mp->get_bvect_spher() ) ;
    source_p.set_etat_qcq() ;
    for (int i=0; i<3; i++) {
      source_p.set(i) = Cmp(*cmp[i]) ;
    }
    source_p.change_triad(mp->get_bvect_cart()) ;

    Tenseur vect_auxi (*mp, 1, CON, mp->get_bvect_cart()) ;
    vect_auxi.set_etat_qcq() ;
    for (int i=0; i<3 ;i++){
	vect_auxi.set(i) = 0. ;
    }
    Tenseur scal_auxi (*mp) ;
    scal_auxi.set_etat_qcq() ;
    scal_auxi.set().annule_hard() ;
    scal_auxi.set_std_base() ;

    Tenseur resu_p(*mp, 1, CON, mp->get_bvect_cart() ) ;
    resu_p.set_etat_qcq() ;
    source_p.poisson_vect(lambda, par, resu_p, vect_auxi, scal_auxi) ;
    resu_p.change_triad(mp->get_bvect_spher() ) ;

     for (int i=1; i<=3; i++) 
       resu.set(i) = resu_p(i-1) ;

     break ;
  }

  default : {
    cout << "Vector::poisson : unexpected type of method !" << endl 
	 << "  method = " << method << endl ; 


    abort() ;
    break ; 
  }

    }// End of switch  
  return resu ;

}




}