File: tslice_check_einstein.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (217 lines) | stat: -rw-r--r-- 6,366 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 *  Methods of class Time_slice to check Einstein equation solutions.
 *
 *    (see file time_slice.h for documentation).
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon, Jose Luis Jaramillo & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char tslice_check_einstein_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_check_einstein.C,v 1.10 2014/10/13 08:53:47 j_novak Exp $" ;

/*
 * $Id: tslice_check_einstein.C,v 1.10 2014/10/13 08:53:47 j_novak Exp $
 * $Log: tslice_check_einstein.C,v $
 * Revision 1.10  2014/10/13 08:53:47  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.9  2014/10/06 15:13:22  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.8  2010/10/20 07:58:09  j_novak
 * Better implementation of the explicit time-integration. Not fully-tested yet.
 *
 * Revision 1.7  2007/11/06 12:10:56  j_novak
 * Corrected some mistakes.
 *
 * Revision 1.6  2007/11/06 11:53:34  j_novak
 * Use of contravariant version of the 3+1 equations.
 *
 * Revision 1.5  2007/06/28 14:40:36  j_novak
 * Dynamical check: the fields in the last domain are set to zero to avoid dzpuis problems
 *
 * Revision 1.4  2004/05/12 15:24:20  e_gourgoulhon
 * Reorganized the #include 's, taking into account that
 * time_slice.h contains now an #include "metric.h".
 *
 * Revision 1.3  2004/04/07 07:58:21  e_gourgoulhon
 * Constructor as Minkowski slice: added call to std_spectral_base()
 * after setting the lapse to 1.
 *
 * Revision 1.2  2004/04/05 12:38:45  j_novak
 * Minor modifs to prevent some warnings.
 *
 * Revision 1.1  2004/04/05 11:54:20  j_novak
 * First operational (but not tested!) version of checks of Eintein equations.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_check_einstein.C,v 1.10 2014/10/13 08:53:47 j_novak Exp $
 *
 */

// C headers
#include <cstdlib>
#include <cassert>

// Lorene headers
#include "time_slice.h"
#include "unites.h"

namespace Lorene {
Tbl Time_slice::check_hamiltonian_constraint(const Scalar* energy_density,
					     ostream& ost, bool verb) const {
  using namespace Unites ;

  bool vacuum = ( energy_density == 0x0 ) ;
  
  Scalar field = trk() * trk() - contract( k_uu(), 0, 1, k_dd(), 0, 1 ) ;
  
  field.dec_dzpuis() ;  // dzpuis: 4 -> 3 
    
  field += gam().ricci_scal() ;

  const Scalar* matter ;
  if (vacuum) 
    matter = new Scalar (0*field) ;
  else
    matter = energy_density ;

  if (verb)  ost << endl ;
  const char* comment = 0x0 ;
  if (verb) comment = "Check of the Hamiltonian constraint" ;
  Tbl resu = maxabs(field - (4*qpig) * (*matter), comment, ost,verb ) ;
  if (verb) ost << endl ;

  if (vacuum) delete matter ;

  return resu ;

}
    
Tbl Time_slice::check_momentum_constraint(const Vector* momentum_density, 
					  ostream& ost, bool verb) const {
  using namespace Unites ;
  
  bool vacuum = ( momentum_density == 0x0 ) ;
  
  Vector field = k_uu().divergence(gam()) - trk().derive_con(gam()) ;


  const Vector* matter ;
  if (vacuum) 
    matter = new Vector (0*field) ;
  else {
    assert (momentum_density->get_index_type(0) == CON) ;
    matter = momentum_density ;
  }
  
  if (verb)  ost << endl ;
  const char* comment = 0x0 ;
  if (verb) comment = "Check of the momentum constraint" ;
  Tbl resu = maxabs(field - (2*qpig) * (*matter), comment, ost, verb ) ;

  if (verb)  ost << endl ;

  if (vacuum) delete matter ;

  return resu ;

}

Tbl Time_slice::check_dynamical_equations(const Sym_tensor* strain_tensor,
					  const Scalar* energy_density,
					  ostream& ost, bool verb) const {

  using namespace Unites ;

  bool vacuum = ( ( strain_tensor == 0x0 ) && ( energy_density == 0x0 ) ) ;

  Sym_tensor dyn_lhs = (k_dd_evol.time_derive(jtime, scheme_order)).up_down(gam()) ;
  int nz = dyn_lhs.get_mp().get_mg()->get_nzone() ;
  dyn_lhs.annule_domain(nz-1) ;
  dyn_lhs = dyn_lhs - k_dd().derive_lie(beta()).up_down(gam())  ;
  dyn_lhs.annule_domain(nz-1) ;
  
  const Sym_tensor* matter ;
  if (vacuum) 
    matter = new Sym_tensor(0 * dyn_lhs) ;
  else {
    const Scalar* ener = 0x0 ;
    const Sym_tensor* sij = 0x0 ;
    bool new_e = false ;
    bool new_s = false ;
    if (energy_density == 0x0) {
      ener = new Scalar ( 0 * nn() ) ;
      new_e = true ;
    }
    else {
      ener = energy_density ;
      if (strain_tensor == 0x0) {
	sij = new Sym_tensor(0 * dyn_lhs) ;
	new_s = true ;
      }
      else
	sij = strain_tensor ;
    }
    matter = new Sym_tensor( (sij->trace(gam()) - *ener)*gam().con() 
			      - 2*(*sij) ) ;
    if (new_e) delete ener ;
    if (new_s) delete sij ;
  }

  Sym_tensor dyn_rhs = nn()*( (gam().ricci().up_down(gam()) + trk()*k_uu() 
						     + qpig * (*matter))) ;
  dyn_rhs.annule_domain(nz-1) ;
  dyn_rhs = dyn_rhs - 2*nn()*contract(k_uu(), 1, k_dd().up(0, gam()), 1)  ;
  dyn_rhs.annule_domain(nz-1) ;
  dyn_rhs = dyn_rhs - nn().derive_con(gam()).derive_con(gam()) ;
  dyn_rhs.annule_domain(nz-1) ;
    
  if (verb) ost << endl ;
  const char* comment = 0x0 ;
  if (verb) comment = "Check of the dynamical equations" ;
  Tbl resu_tmp = maxabs(dyn_lhs - dyn_rhs, comment, ost, verb) ;

  if (verb) ost << endl ;

  if (vacuum) delete matter ;

  Tbl resu(4, 4, resu_tmp.get_dim(0)) ;
  resu.annule_hard() ; //## To initialize resu(0,0,...) which 
                       // does not correspond to a valid component

  for (int i=1; i<=3; i++) {
    for (int j=1; j<=i; j++) {
      Itbl idx(2) ;
      idx.set(0) = i ;
      idx.set(1) = j ;
      int pos = dyn_lhs.position(idx) ;
      assert (dyn_rhs.position(idx) == pos) ;

      for (int lz=0; lz<resu_tmp.get_dim(0); lz++)
	resu.set(i,j,lz) = resu_tmp(pos, lz) ;
    }
  }

  return resu ;

}
}