1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
* Method of class Time_slice_conf to compute valid initial data
*
* (see file time_slice.h for documentation).
*
*/
/*
* Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char tslice_conf_init_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_conf_init.C,v 1.13 2014/10/13 08:53:48 j_novak Exp $" ;
/*
* $Id: tslice_conf_init.C,v 1.13 2014/10/13 08:53:48 j_novak Exp $
* $Log: tslice_conf_init.C,v $
* Revision 1.13 2014/10/13 08:53:48 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.12 2014/10/06 15:13:22 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.11 2010/10/20 07:58:09 j_novak
* Better implementation of the explicit time-integration. Not fully-tested yet.
*
* Revision 1.10 2008/12/04 18:22:49 j_novak
* Enhancement of the dzpuis treatment + various bug fixes.
*
* Revision 1.9 2008/12/02 15:02:22 j_novak
* Implementation of the new constrained formalism, following Cordero et al. 2009
* paper. The evolution eqs. are solved as a first-order system. Not tested yet!
*
* Revision 1.8 2004/05/17 19:53:13 e_gourgoulhon
* Added arguments graph_device and method_poisson_vect.
*
* Revision 1.7 2004/05/12 15:24:20 e_gourgoulhon
* Reorganized the #include 's, taking into account that
* time_slice.h contains now an #include "metric.h".
*
* Revision 1.6 2004/05/10 09:12:01 e_gourgoulhon
* Added a call to del_deriv() at the end.
*
* Revision 1.5 2004/05/03 14:48:48 e_gourgoulhon
* Treatment of special cases nn_jp1.etat = ETATUN and psi_jp1.etat = ETATUN.
*
* Revision 1.4 2004/04/29 17:10:36 e_gourgoulhon
* Added argument pdt and update of depth slices at the end,
* taking into account the known time derivatives.
*
* Revision 1.3 2004/04/08 16:45:11 e_gourgoulhon
* Use of new methods set_*.
*
* Revision 1.2 2004/04/07 07:58:21 e_gourgoulhon
* Constructor as Minkowski slice: added call to std_spectral_base()
* after setting the lapse to 1.
*
* Revision 1.1 2004/04/05 21:25:37 e_gourgoulhon
* First version.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_conf_init.C,v 1.13 2014/10/13 08:53:48 j_novak Exp $
*
*/
// C headers
#include <cassert>
// Lorene headers
#include "time_slice.h"
#include "unites.h"
#include "graphique.h"
#include "utilitaires.h"
namespace Lorene {
void Time_slice_conf::initial_data_cts(const Sym_tensor& uu,
const Scalar& trk_in, const Scalar& trk_point,
double pdt, double precis, int method_poisson_vect,
const char* graph_device, const Scalar* p_ener_dens,
const Vector* p_mom_dens, const Scalar* p_trace_stress) {
using namespace Unites ;
// Verifications
// -------------
double tr_uu = max(maxabs(uu.trace(tgam()), "trace tgam_{ij} u^{ij}")) ;
if (tr_uu > 1.e-7) {
cerr <<
"Time_slice_conf::initial_data_cts : the trace of u^{ij} with respect\n"
<< " to the conformal metric tgam_{ij} is not zero !\n"
<< " error = " << tr_uu << endl ;
abort() ;
}
assert(trk_in.check_dzpuis(2)) ;
assert(trk_point.check_dzpuis(4)) ;
// Initialisations
// ---------------
double ttime = the_time[jtime] ;
trk_evol.update(trk_in, jtime, ttime) ;
// Reset of quantities depending on K:
k_dd_evol.downdate(jtime) ;
k_uu_evol.downdate(jtime) ;
set_hata(psi4()*psi()*psi()* uu / (2.* nn()) ) ;
const Map& map = uu.get_mp() ;
const Base_vect& triad = *(uu.get_triad()) ;
// For graphical outputs:
int ngraph0 = 10 ; // index of the first graphic device to be used
int nz = map.get_mg()->get_nzone() ;
double ray_des = 1.25 * map.val_r(nz-2, 1., 0., 0.) ; // outermost radius
// for plots
Scalar ener_dens(map) ;
if (p_ener_dens != 0x0) ener_dens = *(p_ener_dens) ;
else ener_dens.set_etat_zero() ;
Vector mom_dens(map, CON, triad) ;
if (p_mom_dens != 0x0) mom_dens = *(p_mom_dens) ;
else mom_dens.set_etat_zero() ;
Scalar trace_stress(map) ;
if (p_trace_stress != 0x0) trace_stress = *(p_trace_stress) ;
else trace_stress.set_etat_zero() ;
Scalar tmp(map) ;
Scalar source_psi(map) ;
Scalar source_nn(map) ;
Vector source_beta(map, CON, triad) ;
// Iteration
// ---------
int imax = 100 ;
for (int i=0; i<imax; i++) {
//===============================================
// Computations of sources
//===============================================
const Vector& dpsi = psi().derive_cov(ff) ; // D_i Psi
const Vector& dln_psi = ln_psi().derive_cov(ff) ; // D_i ln(Psi)
const Vector& dnn = nn().derive_cov(ff) ; // D_i N
Sym_tensor taa = aa().up_down(tgam()) ;
Scalar aa_quad = contract(taa, 0, 1, aa(), 0, 1) ;
// Source for Psi
// --------------
tmp = 0.125* psi() * tgam().ricci_scal()
- contract(hh(), 0, 1, dpsi.derive_cov(ff), 0, 1 ) ;
tmp.inc_dzpuis() ; // dzpuis : 3 -> 4
tmp -= contract(hdirac(), 0, dpsi, 0) ;
source_psi = tmp - psi()*psi4()* ( 0.5*qpig* ener_dens
+ 0.125* aa_quad
- 8.33333333333333e-2* trk()*trk() ) ;
// Source for N
// ------------
source_nn = psi4()*( nn()*( qpig* (ener_dens + trace_stress) + aa_quad
- 0.3333333333333333* trk()*trk() )
- trk_point )
- 2.* contract(dln_psi, 0, nn().derive_con(tgam()), 0)
- contract(hdirac(), 0, dnn, 0) ;
tmp = psi4()* contract(beta(), 0, trk().derive_cov(ff), 0)
- contract( hh(), 0, 1, dnn.derive_cov(ff), 0, 1 ) ;
tmp.inc_dzpuis() ; // dzpuis: 3 -> 4
source_nn += tmp ;
// Source for beta
// ---------------
source_beta = 2.* contract(aa(), 1,
dnn - 6.*nn() * dln_psi, 0) ;
source_beta += 2.* nn() * ( 2.*qpig* psi4() * mom_dens
+ 0.66666666666666666* trk().derive_con(tgam())
- contract(tgam().connect().get_delta(), 1, 2,
aa(), 0, 1) ) ;
Vector vtmp = contract(hh(), 0, 1,
beta().derive_cov(ff).derive_cov(ff), 1, 2)
+ 0.3333333333333333*
contract(hh(), 1, beta().divergence(ff).derive_cov(ff), 0)
- hdirac().derive_lie(beta())
+ uu.divergence(ff) ;
vtmp.inc_dzpuis() ; // dzpuis: 3 -> 4
source_beta -= vtmp ;
source_beta += 0.66666666666666666* beta().divergence(ff) * hdirac() ;
//=============================================
// Resolution of elliptic equations
//=============================================
// Resolution of the Poisson equation for Psi
// ------------------------------------------
Scalar psi_jp1 = source_psi.poisson() + 1. ;
if (psi_jp1.get_etat() == ETATUN) psi_jp1.std_spectral_base() ;
// Test:
maxabs(psi_jp1.laplacian() - source_psi,
"Absolute error in the resolution of the equation for Psi") ;
des_meridian(psi_jp1, 0., ray_des, "Psi", ngraph0, graph_device) ;
// Resolution of the Poisson equation for the lapse
// ------------------------------------------------
Scalar nn_jp1 = source_nn.poisson() + 1. ;
if (nn_jp1.get_etat() == ETATUN) nn_jp1.std_spectral_base() ;
// Test:
maxabs(nn_jp1.laplacian() - source_nn,
"Absolute error in the resolution of the equation for N") ;
des_meridian(nn_jp1, 0., ray_des, "N", ngraph0+1, graph_device) ;
// Resolution of the vector Poisson equation for the shift
//---------------------------------------------------------
Vector beta_jp1 = source_beta.poisson(0.3333333333333333, ff,
method_poisson_vect) ;
des_meridian(beta_jp1(1), 0., ray_des, "\\gb\\ur\\d", ngraph0+2,
graph_device) ;
des_meridian(beta_jp1(2), 0., ray_des, "\\gb\\u\\gh\\d", ngraph0+3,
graph_device) ;
des_meridian(beta_jp1(3), 0., ray_des, "\\gb\\u\\gf\\d", ngraph0+4,
graph_device) ;
// Test:
Vector test_beta = (beta_jp1.derive_con(ff)).divergence(ff)
+ 0.3333333333333333 * (beta_jp1.divergence(ff)).derive_con(ff) ;
test_beta.inc_dzpuis() ;
maxabs(test_beta - source_beta,
"Absolute error in the resolution for beta") ;
//===========================================
// Convergence control
//===========================================
double diff_psi = max( diffrel(psi(), psi_jp1) ) ;
double diff_nn = max( diffrel(nn(), nn_jp1) ) ;
double diff_beta = max( diffrel(beta(), beta_jp1) ) ;
cout << "step = " << i << " : diff_psi = " << diff_psi
<< " diff_nn = " << diff_nn
<< " diff_beta = " << diff_beta << endl ;
if ( (diff_psi < precis) && (diff_nn < precis) && (diff_beta < precis) )
break ;
//=============================================
// Updates for next step
//=============================================
set_psi_del_npsi(psi_jp1) ;
n_evol.update(nn_jp1, jtime, ttime) ;
beta_evol.update(beta_jp1, jtime, ttime) ;
// New value of A^{ij}:
Sym_tensor aa_jp1 = ( beta().ope_killing_conf(tgam()) + uu )
/ (2.* nn()) ;
set_hata( aa_jp1 / (psi4()*psi()*psi()) ) ;
}
//==================================================================
// End of iteration
//===================================================================
npsi_evol.update( n_evol[jtime]*psi_evol[jtime], jtime, ttime ) ;
A_hata() ;
B_hata() ;
// Push forward in time to enable the computation of time derivatives
// ------------------------------------------------------------------
double ttime1 = ttime ;
int jtime1 = jtime ;
for (int j=1; j < depth; j++) {
jtime1++ ;
ttime1 += pdt ;
psi_evol.update(psi_evol[jtime], jtime1, ttime1) ;
npsi_evol.update(npsi_evol[jtime], jtime1, ttime1) ;
n_evol.update(n_evol[jtime], jtime1, ttime1) ;
beta_evol.update(beta_evol[jtime], jtime1, ttime1) ;
hh_evol.update(hh_evol[jtime], jtime1, ttime1) ;
hata_evol.update(hata_evol[jtime], jtime1, ttime1) ;
A_hata_evol.update(A_hata_evol[jtime], jtime1, ttime1) ;
B_hata_evol.update(B_hata_evol[jtime], jtime1, ttime1) ;
trk_evol.update(trk_evol[jtime], jtime1, ttime1) ;
the_time.update(ttime1, jtime1, ttime1) ;
}
jtime += depth - 1 ;
// Taking into account the time derivative of h^{ij} and K :
// ---------------------------------------------------------
Sym_tensor uu0 = uu ;
uu0.dec_dzpuis(2) ; // dzpuis: 2 --> 0
for (int j=1; j < depth; j++) {
hh_evol.update(hh_evol[jtime] - j*pdt* uu0,
jtime-j, the_time[jtime-j]) ;
trk_evol.update(trk_evol[jtime] - j*pdt* trk_point,
jtime-j, the_time[jtime-j]) ;
}
// Reset of derived quantities (at the new time step jtime)
// ---------------------------
del_deriv() ;
}
}
|